【題目】點(diǎn)P(2,0)繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的點(diǎn)Q的坐標(biāo)是_______.

【答案】(0,2)

【解析】

點(diǎn)P繞點(diǎn)0逆時(shí)針旋轉(zhuǎn)90度后在y軸正半軸根據(jù)OP=0Q即可寫出點(diǎn)Q的坐標(biāo)

點(diǎn)P(2,0)繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的點(diǎn)Q的坐標(biāo)是(0,2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x:(1)3x3=-81;(2)(x-1)2=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學(xué)知識(shí)呢?下面請(qǐng)你解決以下問題:

(1)觀察如圖(1)“箭頭圖”,試探究∠BDC與∠A、∠B、∠C之間大小的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,回答下列兩個(gè)問題:
①如圖(2),把一塊三角板XYZ放置在△ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C.若∠A=50°,求∠ABX+∠ACX

②如圖(3),∠ABD,∠ACD的五等分線分別相交于點(diǎn)G1、G2、G3、G4 , 若∠BDC=135°,∠BG1C=67°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不能使兩個(gè)直角三角形全等的條件(

A. 一條直角邊及其對(duì)角對(duì)應(yīng)相等

B. 斜邊和一條直角邊對(duì)應(yīng)相等

C. 斜邊和一銳角對(duì)應(yīng)相等

D. 兩個(gè)銳角對(duì)應(yīng)相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將“對(duì)頂角相等”改寫為“如果...那么...的形式,可寫為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸、軸分別交于點(diǎn),以線段為邊在第一象限作等邊

(1)若點(diǎn)在反比例函數(shù)的圖象上,求該反比例函數(shù)的解析式;

(2)點(diǎn)在第一象限,過點(diǎn)軸的垂線,垂足為,當(dāng)相切時(shí),點(diǎn)是否在(1)中反比例函數(shù)圖象上,如果在,求出點(diǎn)坐標(biāo);如果不在,請(qǐng)加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2x=y,且x5y,則x的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),一次函數(shù)圖象經(jīng)過點(diǎn)B(﹣2,﹣1),與y軸的交點(diǎn)為C,與x軸的交點(diǎn)為D.
(1)求一次函數(shù)的解析式;
(2)求C點(diǎn)的坐標(biāo);
(3)求△AOD的面積;
(4)直接寫出不等式kx+b<0的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為確保廣大居民家庭基本用水需求的同時(shí)鼓勵(lì)家庭節(jié)約用水,對(duì)居民家庭每戶每月用水量采用分檔遞增收費(fèi)的方式,每戶每月用水量不超過基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi).為對(duì)基本用水量進(jìn)行決策,隨機(jī)抽查戶居民家庭每戶每月用水量的數(shù)據(jù),整理繪制出下面的統(tǒng)計(jì)表:

(1)為確保%的居民家庭每戶每月的基本用水量需求,那么每戶每月的基本用水量最低應(yīng)確定為多少立方米?

(2)若將(1)中確定的基本用水量及其以內(nèi)的部分按每立方米元交費(fèi),超過基本用水量的部分按每立方米元交費(fèi).設(shè)表示每戶每月用水量(單位:),表示每戶每月應(yīng)交水費(fèi)(單位:元),求的函數(shù)關(guān)系式;

(3)某戶家庭每月交水費(fèi)是元,請(qǐng)按以上收費(fèi)方式計(jì)算該家庭當(dāng)月用水量是多少立方米?

查看答案和解析>>

同步練習(xí)冊(cè)答案