【題目】如圖,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC﹣BC=b cm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?并說明理由;
【答案】(1)線段MN的長是7cm;(2)線段MN的長是acm;(3)線段MN的長是bcm.
【解析】試題分析:(1)先由點M、N分別是AC、BC的中點得出MC=4cm,NC=3cm,再運用MN=MC+CN即可求解;
(2)與(1)的過程類似,即可得出相應的結論;
(3)先根據(jù)題意畫出圖形,再運用MN=MC-CN= (AC-BC)即可求解.
試題解析:(1)∵點M、N分別是AC、BC的中點,
∴MC=AC=×8=4(cm),NC=BC=×6=3(cm),
∴MN=MC+CN=4+3=7(cm);
(2)MN=a.理由如下:
∵點M、N分別是AC、BC的中點,
∴MC=AC,NC=BC,
∴MN=MC+CN= (AC+BC)= a(cm);
(3)如圖:
∵點M、N分別是AC、BC的中點,
∴MC=AC,NC=BC,
∴MN=MC-CN= (AC-BC)= b(cm).
科目:初中數(shù)學 來源: 題型:
【題目】學習了有理數(shù)的乘法后,老師給同學們布置這樣一道題目:計算49 ×(–5),看誰算的又快又對,有三位同學的解法如下:
小軍:原式 =(49 + )×(–5)= 49×(–5)+ ×(–5)
=–245–4=–249;
小明:原式 = – × 5 = – = – 249 ;
小麗:原式 =(49 + )×(-5)=(50 -1 + )×(-5)
=(50 - )×(-5)= 50 ×(-5)+( - ) ×(-5)
= –250 += –249;
(1)對于以上三種解法,你認為誰的解法較好?
(2)上面的解法對你有何啟發(fā),用你認為最合適的方法計算:
19 ×(– 8)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小彬和小明每天早晨堅持跑步,小彬每秒跑4米,小明每秒跑6米.
(1)如果他們站在百米跑道的兩端同時相向起跑,那么幾秒后兩人相遇?
(2)如果小明站在百米跑道的起點處,小彬站在他前面10米處,兩人同時同向起跑,幾秒后小明能追上小彬?
(2)如果他們都站在四百米環(huán)形跑道的起點處,兩人同時同向起跑,幾分鐘后他們再次相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點O是直線AB上的一點, ,OD、OE分別是、 的角平分線.
(1)求的度數(shù);
(2)寫出圖中與互余的角;
(3)圖中有的補角嗎?若有,請把它找出來,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是( )
A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….
若字母 表示自然數(shù),請把你觀察到的規(guī)律用含有 的式子表示出來________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的是( )
A.∠A=∠C,∠B=∠D
B.AB∥CD,AB=CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com