如圖,直線l過(guò)正方形ABCD的頂點(diǎn)D,過(guò)A、C分別作直線l的垂線,垂足分別為E、F.若AE=4a,CF=a,則正方形ABCD的面積為   
【答案】分析:利用三角形全等,可得到DE=CF=a,再用勾股定理解直角三角形則正方形的面積可求.
解答:解:設(shè)直線l與BC相交于點(diǎn)G
在Rt△CDF中,CF⊥DG
∴∠DCF=∠CGF
∵AD∥BC
∴∠CGF=∠ADE
∴∠DCF=∠ADE
∵AE⊥DG,∴∠AED=∠DFC=90°
∵AD=CD
∴△AED≌△DFC
∴DE=CF=a
在Rt△AED中,AD2=17a2,即正方形的面積為17a2
故答案為:17a2
點(diǎn)評(píng):本題應(yīng)用全等三角形和勾股定理解題,比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線L過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線L的距離分別是1和2,則正方形的邊長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線l的距離分別是a和b,則正方形的邊長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,直線l過(guò)正方形ABCD的頂點(diǎn)D,過(guò)A、C分別作直線l的垂線,垂足分別為E、F.若AE=4a,CF=a,則正方形ABCD的面積為
17a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線l的距離分別為1和2,則正方形的邊長(zhǎng)是(  )
A、2
B、
5
C、3
D、
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線d過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線d的距離分別是
2
和2
2
,求正方形ABCD的對(duì)角線AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案