2.下列各數(shù)中最大的數(shù)是( 。
A.-$\sqrt{2}$B.$\sqrt{2}$C.0D.1

分析 正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對值大的反而小,據(jù)此判斷即可.

解答 解:根據(jù)實(shí)數(shù)比較大小的方法,可得
-$\sqrt{2}$<0<1<$\sqrt{2}$,
所以最大的數(shù)是$\sqrt{2}$.
故選:B.

點(diǎn)評 此題主要考查了實(shí)數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:正實(shí)數(shù)>0>負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對值大的反而。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.某種商品進(jìn)貨后,零售價(jià)定為每件900元,為了適應(yīng)市場競爭,商店按零售價(jià)的九折降價(jià),并讓利40元銷售,仍可獲利25%,問這種商品的進(jìn)價(jià)為多少元?( 。
A.610B.616C.648D.680

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.計(jì)算:-a4•(-a)2=-a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.把邊長為1的正方形紙片OABC放在直線m上,OA邊在直線m上,然后將正方形紙片繞著頂點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,此時(shí),點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處,又將正方形紙片AO1C1B1繞B1點(diǎn),按順時(shí)針方向旋轉(zhuǎn)90°…,按上述方法經(jīng)過61次旋轉(zhuǎn)后,頂點(diǎn)O經(jīng)過的總路程為$\frac{15\sqrt{2}+31}{2}$π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.探索與研究
知識鏈接:
已知,點(diǎn)D是△ABC外接圓上的一點(diǎn)(不與點(diǎn)A、B重合).D1、D2為平面內(nèi)任意點(diǎn).
①如圖①,當(dāng)點(diǎn)C與D、D1、D2在直線AB同側(cè)時(shí),在邊AB所對的∠D、∠D1、∠D2三個(gè)角中,唯有∠D=∠C.
②如圖②,當(dāng)點(diǎn)C與D、D1、D2在直線AB兩側(cè)時(shí),在邊AB所對的∠D、∠D1、∠D2三個(gè)角中,唯有∠D與∠C互補(bǔ).
逆向思維:
已知,⊙O是△ABC的外接圓,若△ABC的某邊所對的∠D與△ABC該邊所對的內(nèi)角相等或互補(bǔ),則點(diǎn)D在該三角形的外接圓上.(注:該結(jié)論在解答以下題目時(shí)可直接使用,無需證明)
遷移應(yīng)用:
(1)如圖③,四邊形ABCD中∠ACB=60°,請用直尺和圓規(guī)在四邊形ABCD的邊上確定點(diǎn)E的位置(不寫作法,保留作圖痕跡),使∠AEB=60°.若有不同的位置,請用E1、E2…區(qū)分.
(2)如圖④,AB=AD,AE∥BD,∠ECA=∠CDB,求證:點(diǎn)D在△ACE的外接圓上.
(3)如圖⑤,在平面直角坐標(biāo)系中,拋物線y=-ax2+3ax+4a(a>0,a為常數(shù))的圖象與y軸交于點(diǎn)C,交x軸于點(diǎn)A、B(A點(diǎn)在B點(diǎn)左側(cè)),頂點(diǎn)為D.拋物線的對稱軸上是否存在點(diǎn)P,使∠BPC=∠BAC?若存在,求出點(diǎn)P的坐標(biāo)(可用a的代數(shù)式表示),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.據(jù)最新數(shù)據(jù)統(tǒng)計(jì),重慶市常住人口約30160000人,請將30160000用科學(xué)記數(shù)法表示為3.016×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列圖形中,不是中心對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知n是正整數(shù),則奇數(shù)可以用代數(shù)式2n+1來表示
(1)分解因式:(2n+1)2-1;
(2)我們把所有“奇數(shù)的平方減去1”所得的數(shù)叫“白銀數(shù)”,則所有“白銀數(shù)”的最大公約數(shù)是多少?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.解方程組$\left\{\begin{array}{l}{2x=3y①}\\{3x-2y=5②}\end{array}\right.$,按要求完成下面步驟
解:由①得,x=$\frac{3}{2}$y③
把③代入②得:
3×$\frac{3}{2}$y-2y=5
整理得,$\frac{5}{2}$y=5
解得y=2
把y=2代入方程③,得x=3
∴原方程組的解是$\left\{\begin{array}{l}{x=()}\\{y=()}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案