(11分)如圖1,已知拋物線經(jīng)過原點(diǎn)0和x軸上另一個(gè)點(diǎn)E,頂點(diǎn)M的坐標(biāo)是(2,4); 矩形ABCD的頂點(diǎn)A與點(diǎn)0重合,AD、AB分別在x軸和y軸上,且AD=2 ,AB=3.

(1)求該拋物線所參應(yīng)的函數(shù)表達(dá)式;

(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2).

①當(dāng)t=時(shí),判斷點(diǎn)P時(shí)否在直線ME上,并說明理由;

 

②設(shè)以P、N、C、D為頂點(diǎn)的圖形面積為S,試部S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

 

解:(1)所求拋物線的頂點(diǎn)坐標(biāo)為(2,4),故可設(shè)其函數(shù)表達(dá)式為y=a(x-2)2+4…1分

又拋物線過點(diǎn)(0,0),得0=a(0-2)2+4,解得:a= -1

所以,該拋物線的函數(shù)表達(dá)式為: y=-(x-2)2+4即y=-x2+4x.           ………………3分

(2)①點(diǎn)P不在直線ME上.                                       ………………4分

由拋物線的對(duì)稱性可知:點(diǎn)E的坐標(biāo)為(4,0).

又點(diǎn)M的坐標(biāo)為(2,4),設(shè)直線ME的表達(dá)式為y=kx+b,則有

,所以直線ME的表達(dá)式為y=-2x+8.        ………………6分

 

由已知條件可知,當(dāng)t=時(shí),OA=AP=∴點(diǎn)P的坐標(biāo)為(,).

 

∵點(diǎn)P的坐標(biāo)不滿足直線ME的函數(shù)表達(dá)式y(tǒng)=-2x+8,

∴點(diǎn)P不在直線ME上.                                         ………………7分

②S存在最大值,理由如下:                                           ………8分

由題意可知: OA=AP=t,又∵點(diǎn)A在x軸的非負(fù)半軸上,點(diǎn)N在拋物線y=-x2+4x上,

∴點(diǎn)P與點(diǎn)N的坐標(biāo)分別為(t,t)、(t,-t2+4t),∴AN=-t2+4t(0≤t≤3),

∴PN=AN-AP=-t2+4t-t=-t2+3t.

(i)當(dāng)PN=0即t=0或t=3時(shí),以點(diǎn)P、N、C、D為頂點(diǎn)的圖形是三角形,此三角形的高是AD,底邊為CD, ∴S=.                    ………………9分

 

(ii)當(dāng)PN≠0時(shí), 以點(diǎn)P、N、C、D為頂點(diǎn)的圖形是四邊形.

 

.

 

所以當(dāng)t=時(shí),S最大值=.

 

所以,當(dāng)t=時(shí),以點(diǎn)P、N、C、D為頂點(diǎn)的圖形面積有最大值,其最大值為.………11分

 

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梁子湖區(qū)模擬)2011年上半年,黃岡大別山地區(qū)某市某種農(nóng)產(chǎn)品受不良炒作的影響,價(jià)格一路上揚(yáng),8月初國(guó)家實(shí)施調(diào)控措施后,該農(nóng)產(chǎn)品的價(jià)格開始回落,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),1月份至12月份,該農(nóng)產(chǎn)品的月平均價(jià)格y(元/千克)與月份x之間的函數(shù)關(guān)系式對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上;該圖象從左至右,依次是線段AB、曲線BC,其中曲線BC為拋物線的一部分,已知1月、7月、9月和12月這四個(gè)月的月平均價(jià)格分別為8元/千克、26元/千克、14元/千克、11元/千克.
(1)求該農(nóng)產(chǎn)品的月平均價(jià)格y(元/千克)與月份x之間的函數(shù)關(guān)系式?
(2)2011年的12個(gè)月中,這種農(nóng)產(chǎn)品的月平均價(jià)格哪個(gè)月最低?最低為多少?
(3)若以12個(gè)月份的月平均價(jià)格的平均數(shù)為年平均價(jià)格,月平均價(jià)格高于年平均價(jià)格的月份有哪些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探照燈、鍋蓋天線、汽車燈等都利用了拋物線的一個(gè)原理:由它的焦點(diǎn)處發(fā)出的光線被反射后將會(huì)被平行射出.如圖,由焦點(diǎn)O處發(fā)出的光線OB,OC經(jīng)反射后沿與POQ平行的方向射出,已知∠ABO=42°,∠DCO=53°,則∠BOC=
95°
95°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2011年上半年,黃岡大別山地區(qū)某市某種農(nóng)產(chǎn)品受不良炒作的影響,價(jià)格一路上揚(yáng),8月初國(guó)家實(shí)施調(diào)控措施后,該農(nóng)產(chǎn)品的價(jià)格開始回落,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),1月份至12月份,該農(nóng)產(chǎn)品的月平均價(jià)格y(元/千克)與月份x之間的函數(shù)關(guān)系式對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上;該圖象從左至右,依次是線段AB、曲線BC,其中曲線BC為拋物線的一部分,已知1月、7月、9月和12月這四個(gè)月的月平均價(jià)格分別為8元/千克、26元/千克、14元/千克、11元/千克.
(1)求該農(nóng)產(chǎn)品的月平均價(jià)格y(元/千克)與月份x之間的函數(shù)關(guān)系式?
(2)2011年的12個(gè)月中,這種農(nóng)產(chǎn)品的月平均價(jià)格哪個(gè)月最低?最低為多少?
(3)若以12個(gè)月份的月平均價(jià)格的平均數(shù)為年平均價(jià)格,月平均價(jià)格高于年平均價(jià)格的月份有哪些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)

過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說明理由;

(3)當(dāng)△BDM為直角三角形時(shí),求的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省鄂州市梁子湖區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

2011年上半年,黃岡大別山地區(qū)某市某種農(nóng)產(chǎn)品受不良炒作的影響,價(jià)格一路上揚(yáng),8月初國(guó)家實(shí)施調(diào)控措施后,該農(nóng)產(chǎn)品的價(jià)格開始回落,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),1月份至12月份,該農(nóng)產(chǎn)品的月平均價(jià)格y(元/千克)與月份x之間的函數(shù)關(guān)系式對(duì)應(yīng)的點(diǎn)都在如圖所示的圖象上;該圖象從左至右,依次是線段AB、曲線BC,其中曲線BC為拋物線的一部分,已知1月、7月、9月和12月這四個(gè)月的月平均價(jià)格分別為8元/千克、26元/千克、14元/千克、11元/千克.
(1)求該農(nóng)產(chǎn)品的月平均價(jià)格y(元/千克)與月份x之間的函數(shù)關(guān)系式?
(2)2011年的12個(gè)月中,這種農(nóng)產(chǎn)品的月平均價(jià)格哪個(gè)月最低?最低為多少?
(3)若以12個(gè)月份的月平均價(jià)格的平均數(shù)為年平均價(jià)格,月平均價(jià)格高于年平均價(jià)格的月份有哪些?

查看答案和解析>>

同步練習(xí)冊(cè)答案