【題目】為解方程(x2﹣12﹣5x2﹣1+4=0,我們可以將x2﹣1視為一個整體,然后設x2﹣1=y,則

x2﹣1=y2,原方程化為y2﹣5y+4=0

解得y1=1,y2=4

y=1時,x21=1x2=2x=±;

y=4時,x21=4,x2=5x=±

∴原方程的解為x1=,x2=x3=,x4=

解答問題:

1)填空:在由原方程得到方程①的過程中,利用   法達到了降次的目的,體現(xiàn)了   的數(shù)學思想.

2)解方程:x4﹣x2﹣6=0

【答案】1)換元;轉化;(2x=±

【解析】試題分析:1)在由原方程得到方程①的過程中,利用換元法達到了降次的目的,體現(xiàn)了轉化的數(shù)學思想;
2)設,原方程可化為關于的方程,求出方程的解得到的值,即可確定出 的值.

試題解析:(1)在由原方程得到方程①的過程中,利用換元法達到了降次的目的,體現(xiàn)了轉化的數(shù)學思想;

故答案為:換元;轉化;

2)設,原方程可化為

解得:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過點C,ADEF于點D,DAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB;

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.

(1)求反比例函數(shù)的解析式;

(2)若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P在平面直角坐標系中按圖中箭頭所示的方向運動,每次運動一個單位,A3A4A5A8A9A10都是等邊三角形.第一次從(0,1)運動到點A10,2),第二次接著運動到點A212),第三次運動到點A31,1),,經(jīng)過2019次運動,動點P所在位置A2019的坐標是( 。

A.807,B.,2

C.,D.807,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖①,在RtABC中,∠A90°,ABkAC,點DAB上一點,DEBC

填空:BDCE的數(shù)量關系為   ;位置關系為   ;

2)類比探究

如圖②,將ADE繞著點A順時針旋轉,旋轉角為αα≤90°),連接BD,CE,請問(1)中的結論還成立嗎?若成立,請給出證明,若不成立,請說明理由.

3)拓展延伸

在(2)的條件下,將ADE繞點A順時針旋轉,旋轉角為α,直線BD,CE交于點F,若AC1AB,當∠ACE15°時,請直接寫出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中, ,點分別是邊的中點,將繞著點旋轉,點旋轉后的對應點分別為點,當直線經(jīng)過點時,線段的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】騰飛中學在教學樓前新建了一座騰飛雕塑(如圖①).為了測量雕塑的高度,小明利用三角板測得雕塑頂端A點的仰角為30°,底部B點的俯角為45°,小華在五樓找到一點D,利用三角板測得A點的俯角為60°(如圖②).若已知CD10米,請求出雕塑AB的高度.(結果精確到0.1米,參考數(shù)據(jù)=1.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化工材料經(jīng)銷公司購進一種化工材料若干千克,價格為每千克40元,物價部門規(guī)定其銷售單價不高于每千克70元,不低于每千克40元.經(jīng)市場調(diào)查發(fā)現(xiàn),日銷量y(千克)是銷售單價x()的一次函數(shù),且當x70時,y80;x60時,y100.在銷售過程中,每天還要支付其他費用350元.

(1)yx的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)求該公司銷售該原料日獲利w()與銷售單價x()之間的函數(shù)關系式;

(3)當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將一副三角板擺放在一起,組成四邊形ABCD,∠ABC=∠ACD90°,∠ADC60°,∠ACB45°,連接BD,則tanCBD的值為_____

查看答案和解析>>

同步練習冊答案