如圖,直角梯形ABCD中,ADBC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A-D-C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以
3
cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1,O2分別從點A、點B同時出發(fā),運動的時間為ts.
(1)設(shè)經(jīng)過t秒,⊙O2與腰CD相切于點F,過點F畫EF⊥DC,交AB于E,則EF=______;
(2)過E畫EGBC,交DC于G,畫GH⊥BC,垂足為H.則∠FEG=______;
(3)求此時t的值;
(4)在0<t≤3范圍內(nèi),當(dāng)t為何值時,⊙O1與⊙O2外切?
(1)∵當(dāng)⊙O2與腰CD相切時,EF的長為⊙O2的半徑,
∴EF=4cm;

(2)∵∠CGH+∠EGF=90°,∠EGF+∠FEG=90°,
∴∠FEG=∠CGH,
在Rt△CGH中,∠C=60°,
∴∠CGH=30°,
∴∠FEG=30°;

(3)設(shè)點O2運動到點E處時,⊙O2與腰CD相切.依題意畫圖,如圖所示,
在直角△CGH中,∠C=60°,∠CGH=30°,GH=
3
t
,
∴CH=t,BH=GE=9-t;
在Rt△EFG中,∠FEG=30°,EF=4,GE=9-t;
在Rt△EFG中,EF=GE×cos∠FEG,即:4=(9-t)×
3
2
;
∴t=(9-
8
3
3
)秒;

(4)由于0<t≤3,所以,點O1在邊AD上,
如圖所示,連接O1O2,由兩圓外切可知O1O2=6cm;
AB=(BC-AD)×tan60°=6×
3
=6
3
,
∴O2A=6
3
-
3
t,
在Rt△O1O2A中,由勾股定理得:t2+(6
3
-
3
t)2=62,即t2-9t+18=0,
解得t1=3,t2=6(不合題意,舍去)
∴經(jīng)過3秒,⊙O1與⊙O2外切.
故答案為:4cm;30°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知相交兩圓的半徑分別為5cm和4cm,公共弦長為6cm,則這兩個圓的圓心距是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),AB是半徑為R的⊙O的一條弦,點P是⊙O上任意一點(與A、B不重合)若R=2,AB=2
3

(1)若點P在⊙O優(yōu)弧AB上,AP、BP分別與以AB為直徑的圓交于C、D點
①請利用圖(1)求∠APB的度數(shù).
②請利用圖(2)求CD的長.
(2)若點P是⊙O劣弧AB上一點,如圖(3)AP、BP的延長線分別交以AB為直徑的圓于C、D,你還能求出CD的長嗎?若能,請求出CD的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD的邊長是6,分別以A,D為圓心,6為半徑在正方形內(nèi)作弧,圓O與AB,弧BD,弧AC都相切,求圓O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

相交兩圓的公共弦長為6,兩圓的半徑分別為3
2
、5,則這兩圓的圓心距等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點O為圓心的⊙O的半徑為
2
-1
,直線l:y=-x-
2
與坐標(biāo)軸分別交于A、C兩點,點B的坐標(biāo)為(4,1),⊙B與x軸相切于點M.
(1)求點A的坐標(biāo)及∠CAO的度數(shù);
(2)⊙B以每秒1個單位長度的速度沿x軸負方向平移,同時,若直線l繞點A順時針勻速旋轉(zhuǎn),當(dāng)⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切,見圖(2)求B1的坐標(biāo)以及直線AC繞點A每秒旋轉(zhuǎn)多少度?
(3)若直線l不動,⊙B沿x軸負方向平移過程中,能否與⊙O與直線l同時相切?若相切,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法錯誤的是( 。
A.圓內(nèi)接四邊形的對角互補
B.圓內(nèi)接四邊形的鄰角互補
C.圓內(nèi)接平行四邊形是矩形
D.圓內(nèi)接梯形是等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD是⊙O的內(nèi)接正方形,點P在劣弧
CD
上不同于點C得到任意一點,則∠BPC的度數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個頂點分別在⊙O及半徑OM、OP上,并且∠POM=45°,則AB的長為______.

查看答案和解析>>

同步練習(xí)冊答案