【題目】如圖(1),AB∥CD,猜想∠BPD與∠B,∠D的關(guān)系,說出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,并說明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,不需要說明理由.
【答案】
(1)解:∠BPD=∠B+∠D.
理由:如圖2,過點(diǎn)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠1=∠B,∠2=∠D,
∴∠BPD=∠1+∠2=∠B+∠D
(2)解:如圖(3):∠BPD=∠D﹣∠B.
理由:∵AB∥CD,
∴∠1=∠D,
∵∠1=∠B+∠P,
∴∠D=∠B+∠P,
即∠BPD=∠D﹣∠B;
如圖(4):∠BPD=∠B﹣∠D.
理由:∵AB∥CD,
∴∠1=∠B,
∵∠1=∠D+∠P,
∴∠B=∠D+∠P,
即∠BPD=∠B﹣∠D.
【解析】(1)首先過點(diǎn)P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得∠1=∠B,∠2=∠D,則可求得∠BPD=∠B+∠D.(2)由AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等與三角形外角的性質(zhì),即可求得∠BPD與∠B、∠D的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC∥BD,AB和CD相交于點(diǎn)E,AC=6,BD=4,F(xiàn)是BC上一點(diǎn),S△BEF:S△EFC=2:3.
(1)求EF的長(zhǎng);
(2)如果△BEF的面積為4,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(3a﹣5,a+1)
(1)若點(diǎn)A在y軸上,求a的值及點(diǎn)A的坐標(biāo).
(2)若點(diǎn)A到x軸的距離與到y(tǒng)軸的距離相等;求a的值及點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題不正確的是( )
A.對(duì)角線互相平分且一組鄰邊相等的四邊形是菱形
B.兩組對(duì)邊分別平行且一組鄰邊相等的四邊形是菱形
C.兩組對(duì)角分別相等且一組鄰邊相等的四邊形是菱形
D.對(duì)角線互相垂直且相等的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了“講文明、守秩序、迎南博”知識(shí)競(jìng)賽活動(dòng),從中抽取了7名同學(xué)的參賽成績(jī)?nèi)缦?/span>(單位:分):80,90,70,100,60,80,80,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A. 90,80 B. 70,80
C. 80,80 D. 100,80
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com