如圖,拋物線y=ax2+bx+c經(jīng)過A(-3,0),B(1,0),C(3,6)三點,且與y軸交于點E.(1)求拋物線的解析式;
(2)若點F的坐標為(0,-),直線BF交拋物線于另一點P,試比較△AFO與△PEF的周長的大小,并說明理由.

【答案】分析:(1)可根據(jù)A、B、C三點坐標,用待定系數(shù)法求出拋物線的解析式.
(2)求出兩三角形的周長,就必須知道P點的坐標,可先根據(jù)B、F的坐標求出直線BF的解析式,然后聯(lián)立拋物線的解析式即可求出P點坐標,然后根據(jù)A、E、F、P四點坐標求出兩三角形的周長,然后判斷它們的大小即可.
解答:解:(1)設拋物線的解析式為y=a(x+3)(x-1),
已知拋物線過C點則有:a(3+3)(3-1)=6,
解得a=,
∴拋物線解析式為y=x2+x-

(2)∵直線BF解析式為y=x-
∴列出方程組,
解得,,
∴點P坐標(-2,-).
求出△AFO的周長為
求出△PEF的周長為3+
∴△AFO的周長大于△PEF的周長.
點評:本題主要考查了用待定系數(shù)法求二次函數(shù)解析式以及函數(shù)圖象交點的求法等知識點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結(jié)論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案