【題目】如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點(diǎn),且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點(diǎn),且MP⊥NQ.MP與NQ是否相等?并說(shuō)明理由.
【答案】解:(1)證明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°。
∵AF⊥BE,∴∠ABE+∠BAF=90°。∴∠ABE=∠DAF。
∵在△ABE和△DAF中,,
∴△ABE≌△DAF(ASA)。
∴AF=BE。
(2)MP與NQ相等。理由如下:
如圖,過(guò)點(diǎn)A作AF∥MP交CD于F,過(guò)點(diǎn)B作BE∥NQ交AD于E,則四邊形AMPF、BNQE都是是平行四邊形,所以,MP=AF,NQ=BE,由(1)AF=BE,即得MP=NQ。
【解析】
試題(1)根據(jù)正方形的性質(zhì)可得AB=AD,∠BAE=∠D=90°,再根據(jù)同角的余角相等求出∠ABE=∠DAF,然后利用“角邊角”證明△ABE和△DAF全等,再根據(jù)全等三角形的證明即可。
(2)過(guò)點(diǎn)A作AF∥MP交CD于F,過(guò)點(diǎn)B作BE∥NQ交AD于E,則四邊形AMPF、BNQE都是是平行四邊形,所以,MP=AF,NQ=BE,由(1)AF=BE,即得MP=NQ。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點(diǎn)D,以AD為邊作等邊△ADE,延長(zhǎng)ED交BC于點(diǎn)F,BC=2 ,則圖中陰影部分的面積為 . (結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊長(zhǎng)方形場(chǎng)地ABCD的長(zhǎng)AB與寬AD的比為2∶1,DE⊥AC于點(diǎn)E,BF⊥AC于點(diǎn)F,連結(jié)BE,DF,則四邊形DEBF與長(zhǎng)方形ABCD的面積比為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,點(diǎn)E分別是AB,AC的中點(diǎn),點(diǎn)F是DE上一點(diǎn),∠AFC=90°,BC=10cm,AC=6cm,則DF=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點(diǎn),AD⊥AB交BE延長(zhǎng)線于點(diǎn)D,CF平分∠ACB交BD于點(diǎn)F,連接CD.
求證:(1)AD=CF;
(2)點(diǎn)F為BD的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知:如圖1,P為△ADC內(nèi)一點(diǎn),DP、CP分別平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,則∠P=____________°;(答案直接填在題中橫線上)
(2)如圖2,P為四邊形ABCD內(nèi)一點(diǎn),DP、CP分別平分∠ADC和∠BCD,試探究∠P與∠A+∠B的數(shù)量關(guān)系,并寫出你的探索過(guò)程;
(3)如圖3,P為五邊形ABCDE內(nèi)一點(diǎn),DP、CP分別平分∠EDC和∠BCD,請(qǐng)直接寫出∠P與∠A+∠B+∠E的數(shù)量關(guān)系:________________;
(4)若P為n邊形A1A2A3…An內(nèi)一點(diǎn),PA1平分∠AnA1A2,PA2平分∠A1A2A3,請(qǐng)直接寫出∠P與∠A3+A4+A5+…∠An的數(shù)量關(guān)系:__________________________.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項(xiàng)得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號(hào)得4x﹣2﹣3x﹣9=1.
其中正確的個(gè)數(shù)有( )
A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BC>AB>AC.甲、乙兩人想在BC上取一點(diǎn)P,使得∠APC=2∠ABC,其作法如下: (甲)作AB的中垂線,交BC于P點(diǎn),則P即為所求
(乙)以B為圓心,AB長(zhǎng)為半徑畫弧,交BC于P點(diǎn),則P即為所求
對(duì)于兩人的作法,下列判斷何者正確?( )
A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com