如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(-1,2),與y軸交于(0,2)點(diǎn),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:①將x=-2代入y=ax2+bx+c,可以結(jié)合圖象得出x=-2時(shí),y<0;
②由y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(-1,2),a-b+c=2,與y軸交于(0,2)點(diǎn),c=2,從而得出a-b=0,二次函數(shù)的開(kāi)口向下,a<0,∴2a-b<0;
③根據(jù)函數(shù)與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中-2<x1<-1,0<x2<1,可以得出兩根的近似值,從而代入函數(shù)解析式,得出a,b,的值;得出a<-1;
④利用③的解析式得出,b2+8a>4ac.
解答:解:二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(-1,2),與y軸交于(0,2)點(diǎn),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中-2<x1<-1,0<x2<1,下列結(jié)論
①4a-2b+c<0;當(dāng)x=-2時(shí),y=ax2+bx+c,y=4a-2b+c,
∵-2<x1<-1,∴y<0,故①正確;

②2a-b<0;
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(-1,2),
∴a-b+c=2,與y軸交于(0,2)點(diǎn),c=2,
∴a-b=0,二次函數(shù)的開(kāi)口向下,a<0,
∴2a-b<0,故②正確;

③已知拋物線經(jīng)過(guò)(-1,2),即a-b+c=2(1),由圖知:當(dāng)x=1時(shí),y<0,即a+b+c<0(2),
由①知:4a-2b+c<0(3);聯(lián)立(1)(2),得:a+c<1;聯(lián)立(1)(3)得:2a-c<-4;
故3a<-3,即a<-1;所以③正確


④由于拋物線的對(duì)稱軸大于-1,所以拋物線的頂點(diǎn)縱坐標(biāo)應(yīng)該大于2,即:
>2,由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正確,
故選:D.
點(diǎn)評(píng):此題主要考查了拋物線與x軸的交點(diǎn)坐標(biāo)性質(zhì),以及利用函數(shù)圖象得出函數(shù)與坐標(biāo)軸的近似值,進(jìn)而得出函數(shù)解析式,這種題型是中考中新題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長(zhǎng)為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對(duì)稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過(guò)點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程,如圖的二次函數(shù)圖象(部分)刻畫(huà)了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)30萬(wàn)元;
(3)從第幾個(gè)月起公司開(kāi)始盈利?該月公司所獲利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時(shí),ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時(shí),ax2+bx+c的值隨x增大而減。

查看答案和解析>>

同步練習(xí)冊(cè)答案