【題目】如圖,一艘海輪位于燈塔P的南偏東60方向,距離燈塔100海里的A處,它計(jì)劃去往位于燈塔P的北偏東45方向上的B處.(參考數(shù)據(jù)≈1.414, ≈1.732, ≈2.449)
(1)問B處距離燈塔P有多遠(yuǎn)?(結(jié)果精確到0.1海里)
(2)假設(shè)有一圓形暗礁區(qū)域,它的圓心位于射線PB上,距離燈塔190海里的點(diǎn)O處.圓形暗礁區(qū)域的半徑為50海里,進(jìn)入這個(gè)區(qū)域,就有觸礁的危險(xiǎn).請(qǐng)判斷海輪到達(dá)B處是否有觸礁的危險(xiǎn),并說明理由.
【答案】(1)B處距離P有122.5海里(2)沒有危險(xiǎn)
【解析】試題分析:(1)首先根據(jù)題意得出∠MPA=∠PAD=60°,以及∠PDB=∠PBD=45°,再利用解直角三角形求出即可.(2)首先求出OB的長,進(jìn)而得出OB>50,即可得出答案.
試題解析:
(1)作PC⊥AB于點(diǎn)C
在Rt△PAC中,∠PCA=90,∠CPA=90-60=30
∴PC=PA·cos30=
在Rt△PCB中,∠PCB=90,∠PBC=90-45=45
∴PB=PC=≈122.5
∴B處距離P有122.5海里.
(2)沒有危險(xiǎn).
理由如下:
OB=OP-PB=
= ,
即OB>50,∴無危險(xiǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:三角形中,點(diǎn)、分別在線段、上,于,點(diǎn)在直線上運(yùn)動(dòng),交直線于,過點(diǎn)作,交直線于.
(1)如圖1,當(dāng)點(diǎn)在線段的延長線上時(shí),求證:;
(2)如圖2,當(dāng)點(diǎn)在線段的延長線上時(shí),將圖補(bǔ)充完整,點(diǎn)在線段上,連接,若,求證:;
(3)在(2)的條件下,延長至點(diǎn),延長至點(diǎn),若,,則的度數(shù)是 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,∠EAB=60°,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G.使得∠EGB=∠EAB,連接AG.
求證:EG=AG+BG.
小明同學(xué)的思路是:作∠CAM=∠EAB交CE于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請(qǐng)?zhí)骄烤段EC、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解:線段EG、AG、BG之間的數(shù)量關(guān)系為___________________________________________________.證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖左右并排的兩顆大樹的高度分別是AB=8米,CD=12米,兩樹的水平距離BD=5米,一觀測者的眼睛高EF=1.6米,且E、B、D在一條直線上,當(dāng)觀測者的視線FAC恰好經(jīng)過兩棵樹的頂端時(shí),四邊形ABDC的區(qū)域是觀測者的盲區(qū),則此時(shí)觀測者與樹AB的距離EB等于( 。
A.8米 B.7米 C.6米 D.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=-x2+bx+c與x軸相交于點(diǎn)A,C,與y軸相交于點(diǎn)B,連接AB,BC,點(diǎn)A的坐標(biāo)為(2,0),tan∠BAO=2,以線段BC為直徑作⊙M交AB于點(diǎn)D,過點(diǎn)B作直線l∥AC,與拋物線和⊙M的另一個(gè)交點(diǎn)分別是E,F(xiàn).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)和線段EF的長;
(3)如圖2,連接CD并延長,交直線l于點(diǎn)N,點(diǎn)P,Q為射線NB上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)P在點(diǎn)Q的右側(cè),且不與N重合),線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo)并直接寫出四邊形CDPQ周長的最小值;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,友情提示:,,.
(1)①若,則的度數(shù)為__________;
②若,則的度數(shù)為__________.
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)且點(diǎn)在直線的上方時(shí),當(dāng)這兩塊角尺有一組邊互相平行時(shí),請(qǐng)直接寫出角度所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為矩形ABCD的對(duì)稱中心,AB=10cm,BC=12cm.點(diǎn)E,F,G分別從A,B,C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向勻速運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)F的運(yùn)動(dòng)速度為3cm/s,點(diǎn)G的運(yùn)動(dòng)速度為xcm/s.當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,△EBF關(guān)于直線EF的對(duì)稱圖形是△EB'F,設(shè)點(diǎn)E,F,G運(yùn)動(dòng)的時(shí)間為t(單位:s).
(1)當(dāng)t= s時(shí),四邊形EBFB'為正方形;
(2)當(dāng)x為何值時(shí),以點(diǎn)E,B,F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形可能全等?
(3)是否存在實(shí)數(shù)t,使得點(diǎn)B'與點(diǎn)O重合?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個(gè)數(shù)是( )
①兩點(diǎn)之間的所有連線中,線段最短;②相等的角是對(duì)頂角;③過一點(diǎn)有且僅有一條直線與己知直線平行;④兩點(diǎn)之間的距離是兩點(diǎn)間的線段;⑤若,則點(diǎn)為線段的中點(diǎn);⑥不相交的兩條直線叫做平行線。
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On均與直線l相切,設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30時(shí),且r1=1時(shí),r2017=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com