已知拋物線y=ax2+bx+c與y軸的交點(diǎn)為C,頂點(diǎn)為M,直線CM的解析式y(tǒng)=-x+2并且線段CM的長(zhǎng)為2
2

(1)求拋物線的解析式.
(2)設(shè)拋物線與x軸有兩個(gè)交點(diǎn)A(x1,0)、B(x2,0),且點(diǎn)A在B的左側(cè),求線段AB的長(zhǎng).
(1)令x=0,則y=2,
所以,點(diǎn)C(0,2),
∵點(diǎn)M在直線y=-x+2上,
∴設(shè)點(diǎn)M的坐標(biāo)為M(x,-x+2),
由勾股定理得CM=
x2+(-x+2-2)2
=2
2
,
整理得,x2=4,
解得x1=2,x2=-2,
當(dāng)x1=2時(shí),y1=-2+2=0,
當(dāng)x2=-2,y2=-(-2)+2=4
∴M(-2,4)或M(2,0),
當(dāng)M(-2,4)時(shí),設(shè)拋物線解析式為y=a(x+2)2+4,
∵拋物線過(guò)點(diǎn)C(0,2),
∴a(0+2)2+4=2,
解得a=-
1
2

∴y=-
1
2
x2-2x+2,
當(dāng)M(2,0)時(shí),設(shè)拋物線解析式為y=a(x-2)2,
∵拋物線過(guò)點(diǎn)C(0,2)點(diǎn),
∴a(0-2)2=2,
解得a=
1
2
,
∴y=
1
2
x2-2x+2,
∴所求拋物線為:y=-
1
2
x2-2x+2或y=
1
2
x2-2x+2;

(2)∵拋物線與x軸有兩個(gè)交點(diǎn),
∴y=
1
2
x2-2x+2不合題意,舍去.
∴拋物線應(yīng)為:y=-
1
2
x2-2x+2,
令y=0,則-
1
2
x2-2x+2=0,
整理得,x2+4x-4=0,
解得x1=-2+2
2
,x2=-2-2
2
,
∵點(diǎn)A在B的左側(cè),
∴點(diǎn)A(-2-2
2
,0),B(-2+2
2
,0),
∴AB=(-2+2
2
)-(-2-2
2
)=4
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)的頂點(diǎn)坐標(biāo)為(2,0),直線y=x+2與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)在y軸上,
(I)求此二次函數(shù)的解析式.
(II)P為線段AB上一點(diǎn)(A,B兩端點(diǎn)除外),過(guò)P點(diǎn)作x軸的垂線PC與(I)中的二此函數(shù)的圖象交于Q點(diǎn),設(shè)線段PQ的長(zhǎng)為m,P點(diǎn)的橫坐標(biāo)為x,求出函數(shù)m與自變量x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(III)線段AB上是否存在一點(diǎn),使(II)中的線段PQ的長(zhǎng)等于5?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,小李推鉛球,如果鉛球運(yùn)行時(shí)離地面的高度y(米)關(guān)于水平距離x(米)的函數(shù)解析式y=-
1
8
x2+
1
2
x+
3
2
,那么鉛球運(yùn)動(dòng)過(guò)程中最高點(diǎn)離地面的距離為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

松花江大橋的一個(gè)橋拱為拋物線形狀,拱頂A離橋面50m,橋面上拱形鋼梁之間的距離BC=120m,建立如圖所示的直角坐標(biāo)系.
(1)寫出A,B,C三點(diǎn)的坐標(biāo);
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),將直線y=kx沿y軸向上平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)B,C兩點(diǎn).
(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)連接CD,求∠OCA與∠OCD兩角和的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知直線y=
2
5
x+2與x軸交于點(diǎn)A,交y軸于C、拋物線y=ax2+4ax+b經(jīng)過(guò)A、C兩點(diǎn),拋物線交x軸于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)點(diǎn)Q在拋物線上,且有△AQC和△BQC面積相等,求點(diǎn)Q的坐標(biāo);
(3)如圖2,點(diǎn)P為△AOC外接圓上
ACO
的中點(diǎn),直線PC交x軸于D,∠EDF=∠ACO.當(dāng)∠EDF繞D旋轉(zhuǎn)時(shí),DE交AC于M,DF交y軸負(fù)半軸于N、問(wèn)CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,其頂點(diǎn)為D,且直線DC的解析式為y=x+3.
(1)求二次函數(shù)的解析式;
(2)求△ABC外接圓的半徑及外心的坐標(biāo);
(3)若點(diǎn)P是第一象限內(nèi)拋物線上一動(dòng)點(diǎn),求四邊形ACPB的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線的解析式是y=
1
4
x2
+1,點(diǎn)C的坐標(biāo)為(-4,0),平行四邊形OABC的頂點(diǎn)A,B在拋物線上,AB與y軸交于點(diǎn)M,已知點(diǎn)Q(x,y)在拋物線上,點(diǎn)P(t,0)在x軸上.
(1)寫出點(diǎn)M的坐標(biāo);
(2)當(dāng)四邊形CMQP是以MQ,PC為腰的梯形時(shí).
①求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
②當(dāng)梯形CMQP的兩底的長(zhǎng)度之比為1:2時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,四邊形ABCD是等腰梯形,其中ADBC,AD=2,BC=4,AB=DC=2,點(diǎn)M從點(diǎn)B開始,以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng);點(diǎn)N從點(diǎn)D開始,沿D→A→B方向,以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng).若點(diǎn)M、N同時(shí)開始運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0).過(guò)點(diǎn)N作NP⊥BC與P,交BD于點(diǎn)Q.
(1)點(diǎn)D到BC的距離為______;
(2)求出t為何值時(shí),QMAB;
(3)設(shè)△BMQ的面積為S,求S與t的函數(shù)關(guān)系式;
(4)求出t為何值時(shí),△BMQ為直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案