【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長;
(2)當(dāng)洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?
【答案】(1)r=34;(2)不需要采取緊急措施.
【解析】試題分析:(1)連結(jié)OA,利用r表示出OD的長,在Rt△AOD中根據(jù)勾股定理求出r的值即可;
(2)連結(jié)OA′,在Rt△A′EO中,由勾股定理得出A′E的長,進(jìn)而可得出A′B′的長,據(jù)此可得出結(jié)論.
試題解析:(1)連結(jié)OA,
由題意得:AD=AB=30,OD=(r-18)
在Rt△ADO中,由勾股定理得:r2=302+(r-18)2,
解得,r=34;
(2)連結(jié)OA′,
∵OE=OP-PE=30,
∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2-OE2,即:A′E2=342-302,
解得:A′E=16.
∴A′B′=32.
∵A′B′=32>30,
∴不需要采取緊急措施.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線的對稱軸繞著點P(,2)順時針旋轉(zhuǎn)45°后與該拋物線交于A、B兩點,點Q是該拋物線上的一點.
(1)求直線AB的函數(shù)表達(dá)式;
(2)如圖①,若點Q在直線AB的下方,求點Q到直線AB的距離的最大值;
(3)如圖②,若點Q在y軸左側(cè),且點T(0,t)(t<2)是直線PO上一點,當(dāng)以P、B、Q為頂點的三角形與△PAT相似時,求所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是四邊形的對角線,AD//BC,,分別過點作、,垂足分別為點,若,則圖中全等的三角形有( )
A.對B.對C.對D.對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在和中,,還需再添加兩個條件才能使,則不能添加的一組條件是( )
A. AC=DE,∠C=∠EB. BD=AB,AC=DE
C. AB=DB,∠A=∠DD. ∠C=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標(biāo)是(﹣3,﹣1).
(1)將△ABC沿y軸正方向平移3個單位得到△A1B1C1,畫出△A1B1C1,并寫出點B1坐標(biāo);
(2)畫出△A1B1C1以點O為旋轉(zhuǎn)中心、順時針方向旋轉(zhuǎn)90度的△A2B2C2,并求出點C1經(jīng)過的路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、D在反比例函數(shù)的圖像上,點B、C在反比例函數(shù)的圖像上,若AB∥CD∥軸,∥軸,且,,,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東臺西瓜食口風(fēng)味極佳,特別是品牌“王炸”瓜因皮薄肉嫩含水豐富,刀一碰即快速裂開,享譽市場.吳總將一批品牌“王炸”瓜從我市三倉鎮(zhèn)運往南京市場進(jìn)行銷售,根據(jù)經(jīng)驗,駕駛貨車以60千米/小時的平均速度要4小時到達(dá)南京市場.
(1)求劉總駕駛貨車的汽車速度v(千米/小時)與時間t(小時)之間的函數(shù)關(guān)系式;
(2)早晨5:00從三倉鎮(zhèn)出發(fā),以80千米/小時的平均速度行駛,大概幾點到南京市場;
(3)若返回時,劉總?cè)套吒咚俟,且勻速行駛,根?jù)規(guī)定:最高車速不得超過每小時100公里,最低車速不得低于每小時60公里,試問返程時間的范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中學(xué)校欲向高一級學(xué)校推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計如圖一:
其次,對三名候選人進(jìn)行了筆試和面試兩項測試.各項成績?nèi)缬冶硭荆簣D二是某同學(xué)根據(jù)上表繪制的一個不完整的條形圖.請你根據(jù)以上信息解答下列問題:
(1)補全圖一和圖二.
(2)請計算每名候選人的得票數(shù).
(3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照2:5:3的比確定,計算三名候選人的平均成績,成績高的將被錄取,應(yīng)該錄取誰?
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com