如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C的坐標(biāo)分別為(-1,0),(5,0),(0,2)
【小題1】求過(guò)A、B、C三點(diǎn)的拋物線解析式.
【小題2】若點(diǎn)P從A點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向B點(diǎn)移動(dòng),連接PC并延長(zhǎng)到點(diǎn)E,使CE=PC,將線段PE繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線段PF,連接FB.若點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,(0≤t≤6)設(shè)△PBF的面積為S.
①求S與t的函數(shù)關(guān)系式.
②當(dāng)t是多少時(shí),△PBF的面積最大,最大面積是多少?
【小題3】點(diǎn)P在移動(dòng)的過(guò)程中,△PBF能否成為直角三角形?若能,直接寫出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【小題1】
【小題2】①s=(t-2.5)2-6.25  ②S最大=6
【小題3】能  , t=2或t= 時(shí),△PFB是直角三角形     解析:

 

 
解: 設(shè)拋物線的解析式為

      把(0,2)代入解析式得                                       
, 
(2)過(guò)點(diǎn)F作FD⊥x軸于D

①當(dāng)點(diǎn)P在原點(diǎn)左側(cè)時(shí),BP=6-t,  OP=1-t       
在Rt△POC中,∠PCO+∠CPO=90°
∵∠FPD+∠CPO=90°
∴∠PCO=∠FPD
∵∠POC=∠FDP
∴△CPO∽△PFD                                      
∴ 
∵PF=PE=2PC
∴FD=2PO=2(1-t)                                         
∴S=                   
=t2-7t+6   (0≤t≤1)                        
=(t-2.5)2-6.25
∵1>0
∴t≤2.5 時(shí), s隨著t增大而減小
而0≤t≤1 ∴當(dāng)t=0時(shí)S最大=6
②當(dāng)點(diǎn)P在原點(diǎn)右側(cè)時(shí),OP=t-1,  BP=6-t
∴S△PBF=-t2+7t-6=-(t-3.5)2 +6.25  (1≤t≤6)
∵-1>0
∴t=3.5 時(shí), S最大=6.25>6
∴當(dāng)t=3.5時(shí),△PFB面積最大,最大面積為6.25.
(3)能                                                  
t=2或t= 時(shí),△PFB是直角三角形  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案