已知線段AC上有一動(dòng)點(diǎn)B,分別以AB、BC為邊向線段的同一側(cè)作等邊三角形△ABD和△BCE.連接AE、CD(如圖),若MN分別為AE、CD的中點(diǎn),
(1)求證:AM=CN;
(2)求∠MBN的大;
(3)若連接MN,請(qǐng)你盡可能多的說出圖中相似三角形和全等三角形.
精英家教網(wǎng)
(1)證明:∵△ABD和△BCE是等邊三角形,
精英家教網(wǎng)

∴AB=BD,BC=BE,∠EBC=∠ABC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中
AB=BD
∠ABE=∠DBC
BE=BC
   
∴△ABE≌△DBC(SAS)
∴AE=DC,
∵M(jìn)、N分別為AE、CD的中點(diǎn),
∴AM=
1
2
AE,CN=
1
2
DC
∴AM=CN;

(2)∵△ABE≌△DBC,
∴∠EAB=∠CDB,
在△AMB和△DNB中
AM=DN
∠MAB=∠NDB
AB=DB
  
∴△AMB≌△DNB(SAS),
∴∠ABM=∠DBN,
∵∠ABC=∠ABM+∠MBD=60°,
∴∠DBN+∠MBD=60°,
即∠MBN=60°;

(3)圖中的全等三角形有:△ABM≌△DBN,△BME≌△BCN,△ABE≌△DBC;
相似三角形有:△ABD△BCE,△ABD△BMN,△BMN△BCE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平遙縣模擬)已知:如圖,在Rt△ABC中,∠ACB=90°,BC=3,tan∠BAC=
34
,將∠ABC對(duì)折,使點(diǎn)C的對(duì)應(yīng)點(diǎn)H恰好落在直線AB上,折痕交AC于點(diǎn)O,以點(diǎn)O為坐標(biāo)原點(diǎn),AC所在直線為x軸建立平面直角坐標(biāo)系.
(1)求過A、B、O三點(diǎn)的拋物線解析式;
(2)若在線段AB上有一動(dòng)點(diǎn)P,過P點(diǎn)作x軸的垂線,交拋物線于M,設(shè)PM的長(zhǎng)度等于d,試探究d有無最大值?如果有,請(qǐng)求出最大值,如果沒有,請(qǐng)說明理由.
(3)若在拋物線上有一點(diǎn)E,在對(duì)稱軸上有一點(diǎn)F,且以O(shè)、A、E、F為頂點(diǎn)的四邊形為平行四邊形,試求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•海珠區(qū)一模)已知線段AC上有一動(dòng)點(diǎn)B,分別以AB、BC為邊向線段的同一側(cè)作等邊三角形△ABD和△BCE.連接AE、CD(如圖),若MN分別為AE、CD的中點(diǎn),
(1)求證:AM=CN;
(2)求∠MBN的大;
(3)若連接MN,請(qǐng)你盡可能多的說出圖中相似三角形和全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知線段AC上有一動(dòng)點(diǎn)B,分別以AB、BC為邊向線段的同一側(cè)作等邊三角形△ABD和△BCE.連接AE、CD(如圖),若MN分別為AE、CD的中點(diǎn),
(1)求證:AM=CN;
(2)求∠MBN的大。
(3)若連接MN,請(qǐng)你盡可能多的說出圖中相似三角形和全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省廣州市海珠區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知線段AC上有一動(dòng)點(diǎn)B,分別以AB、BC為邊向線段的同一側(cè)作等邊三角形△ABD和△BCE.連接AE、CD(如圖),若MN分別為AE、CD的中點(diǎn),
(1)求證:AM=CN;
(2)求∠MBN的大小;
(3)若連接MN,請(qǐng)你盡可能多的說出圖中相似三角形和全等三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案