21、如圖,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把,原正方形分割成一些三角形(互相不重疊):

(1)填寫(xiě)下表:
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù) 1 2 3 4 n
分割成的三角形的個(gè)數(shù) 4 6
(2)原正方形能否被分割成2004個(gè)三角形?若能,求此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請(qǐng)說(shuō)明理由.
分析:(1)查出題干圖形中三角形的個(gè)數(shù),并觀察發(fā)現(xiàn),每多一個(gè)點(diǎn),三角形的個(gè)數(shù)增加2,然后據(jù)此規(guī)律填表即可;
(2)根據(jù)(1)中規(guī)律,列式求解,如果n是整數(shù),則能分割,如果不是整數(shù),則不能分割.
解答:解:(1)(1)有1個(gè)點(diǎn)時(shí),內(nèi)部分割成4個(gè)三角形;
有2個(gè)點(diǎn)時(shí),內(nèi)部分割成4+2=6個(gè)三角形;
有3個(gè)點(diǎn)時(shí),內(nèi)部分割成4+2×2=8個(gè)三角形;
有4個(gè)點(diǎn)時(shí),內(nèi)部分割成4+2×3=10個(gè)三角形;

以此類(lèi)推,有n個(gè)點(diǎn)時(shí),內(nèi)部分割成4+2×(n-1)=(2n+2)個(gè)三角形;
故圖表從左至右依次填入:8,10,2n+2;

(2)能.
理由如下:由(1)知2n+2=2004,
解得n=1001,
∴此時(shí)正方形ABCD內(nèi)部有1001個(gè)點(diǎn).(8分)
點(diǎn)評(píng):本題是對(duì)圖形變化問(wèn)題的考查,根據(jù)數(shù)據(jù)的變化規(guī)律,結(jié)合圖形,總結(jié)出每增加一個(gè)點(diǎn),三角形的個(gè)數(shù)增加2的規(guī)律是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案