28、如圖,點(diǎn)O是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,∠AOB=140°,∠AOC=α.將△AOC繞直角頂點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得△BDC,連接OD.
(1)試說(shuō)明△COD是等腰直角三角形;
(2)當(dāng)α=95°時(shí),試判斷△BOD的形狀,并說(shuō)明理由.
分析:(1)由△AOC繞直角頂點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得△BDC,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠OCD=90°,CO=CD,得到△COD是等腰直角三角形;
(2)由△COD是等腰直角三角形,得到∠COD=∠CDO=45°,而∠AOB=140°,α=95°,∠BDC=95°,根據(jù)周角和互余即可求出
∠BOD和∠BDO,再根據(jù)三角形內(nèi)角和定理可得到∠OBD,那么就可判斷△BOD的形狀.
解答:解:(1)∵△AOC繞直角頂點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得△BDC,
∴∠OCD=90°,CO=CD,
∴△COD是等腰直角三角形;

(2)△BOD為銳角三角形.
理由如下:
∵△COD是等腰直角三角形,
∴∠COD=∠CDO=45°,
而∠AOB=140°,α=95°,∠BDC=95°,
∴∠BOD=360°-140°-95°-45°=80°,
∠BDO=95°-45°=50°,
∴∠OBD=180°-80°-50°=50°.
∴△BOD為等腰三角形.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.也考查了等腰直角三角形的判定、三角形的內(nèi)角和定理以及三角形的分類.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖中作OE⊥OD交AC于E,連接DE.
問(wèn)題:(1)觀察并猜測(cè),無(wú)論∠DOE繞著點(diǎn)O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫出答案)
 

(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說(shuō)明:如果經(jīng)過(guò)思考分析,沒有找到解決(2)中的問(wèn)題的方法,請(qǐng)直接驗(yàn)證(1)中猜測(cè)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、附加題:已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖12中作OE⊥OD交AC于E,連接DE.
探究OD、BD、CD三條線段之間有何等量關(guān)系?請(qǐng)?zhí)骄空f(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,點(diǎn)D是等腰直角△ABC斜邊AB上的點(diǎn),將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使它與△BCD′重合,則∠D′BA=
90
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,點(diǎn)O是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,∠AOB=140°,∠AOC=α.將△AOC繞直角頂點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得△BDC,連接OD.
(1)試說(shuō)明△COD是等腰直角三角形;
(2)當(dāng)α=95°時(shí),試判斷△BOD的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案