【題目】1是一個閉合時的夾子,圖2是該夾子的主視示意圖,夾子兩邊為AC,BD(點A與點B重合),點O是夾子轉軸位置,OEAC于點E,OFBD于點F,OE=OF=1cm,AC=BD=6cm, CE=DF CE:AE=2:3.按圖示方式用手指按夾子,夾子兩邊繞點O轉動

(1)E,F兩點的距離最大值時,以點AB,C,D為頂點的四邊形的周長是_____ cm.

(2)當夾子的開口最大(點C與點D重合)時,A,B兩點的距離為_____cm.

【答案】16

【解析】

1)當E、O、F三點共線時,E、F兩點間的距離最大,此時四邊形ABCD是矩形,可得AB=CD=EF=2cm,根據(jù)矩形的性質求出周長即可.

2)當夾子的開口最大(點CD重合)時,連接OC并延長交AB于點H,可得,AH=BH,利用已知先求出,在Rt△OEF中利用勾股定理求出CO的長,由,求出AH,從而求出AB=2AH的長.

1)當EO、F三點共線時,E、F兩點間的距離最大,此時四邊形ABCD是矩形,

∴AB=CD=EF=2cm,

以點A,BC,D為頂點的四邊形的周長為2+6+2+6=16cm

2)當夾子的開口最大(點CD重合)時,連接OC并延長交AB于點H,

,AH=BH,

∵AC=BD=6cm,CE∶AE=2∶3,

,

Rt△OEF中,,

,

∴AB=2AH=

故答案為16,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線,分別交于點,和點,,且 已知半徑等于5, 的長度為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,點P是平行四邊形ABCD外一點,PEABBC于點EPA、PD分別交BC于點MN,點MBE的中點.


1)求證:CN=EN;

2)若平行四邊形ABCD的面積為12,求PMN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的高速發(fā)展,人們的支付方式發(fā)生了巨大改變,某學習小組抽樣調查了春節(jié)期間某商場顧客的支付方式,主要有現(xiàn)金支付、銀聯(lián)卡支付和手機支付,調查得知使用這三種支付的人數(shù)比為,手機支付已成為市民購物便捷支付方式.手機支付主要有以下三種方式:~支付寶,~微信,~其他.現(xiàn)將使用手機支付方式人數(shù)的調查結果繪制成如下不完整的統(tǒng)計圖.

1)扇形統(tǒng)計圖中,________;請補全條形統(tǒng)計圖;

2)若該商場春節(jié)期間共20000人購物,請估計用支付寶進行支付的人數(shù).

3)經(jīng)調查某天顧客現(xiàn)金支付、銀聯(lián)卡支付、手機支付每筆交易發(fā)生的平均金額分別為120元、260元、80元,求這天顧客每筆交易的平均金額.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市在開展線上教學活動期間,為更好地組織初中學生居家體育鍛煉,隨機抽取了部分初中學生對最喜愛的體育鍛煉項目進行線上問卷調查(每人必須且只選其中一項),得到如下兩幅不完整的統(tǒng)計圖表,請根據(jù)圖表信息回答下列問題:

類別

人數(shù)

A

跳繩

59

B

健身操

C

俯臥撐

31

D

開合跳

E

其它

22


1)求參與問卷調查的學生總人數(shù).

2)在參與問卷調查的學生中,最喜愛開合跳的學生有多少人?

3)該市共有初中學生約8000人,估算該市初中學生中最喜愛健身操的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABOC的兩直角邊分別在坐標軸的正半軸上,分別過OB,OC的中點DEAE,AD的平行線,相交于點F, 已知OB=8

1)求證:四邊形AEFD為菱形

2)求四邊形AEFD的面積

3)若點Px軸正半軸上(異于點D),點Qy軸上,平面內是否存在點G,使得以點AP, Q,G為頂點的四邊形與四邊形AEFD相似?若存在,求點P的坐標;若不存在,試說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在正方形ABCD中,對角線ACBD相交于點O,AE,DF分別是∠OAD與∠ODC的平分線,AE的延長線與DF相交于點G,則下列結論:AGDF;EFAB;ABAF;AB2EF.其中正確的結論是( 。

A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點邊上一個動點(不與端點重合),于點沿折疊,點的對應點為為等腰三角形時,則的長為____

查看答案和解析>>

同步練習冊答案