如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點(diǎn)A(1,2).直線l⊥x軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積?

 

【答案】

解:(1)將A(1,2)代入一次函數(shù)解析式得:k+1=2,即k=1,∴一次函數(shù)解析式為y=x+1。

將A(1,2)代入反比例解析式得:m=2,

∴反比例解析式為。

(2)設(shè)一次函數(shù)與x軸交于D點(diǎn),過點(diǎn)A作AE垂直于x軸于點(diǎn)E,

在y=x+1中,令y=0,求出x=﹣1,即OD=1。

∴A(1,2)。∴AE=2,OE=1。

∵N(3,0),∴到B橫坐標(biāo)為3。

將x=3代入一次函數(shù)得:y=4,

將x=3代入反比例解析式得:,

∴B(3,4),即ON=3,BN=4,C(3,),即CN=,

【解析】(1)將A坐標(biāo)代入一次函數(shù)解析式中求出k的值,確定出一次函數(shù)解析式,將A坐標(biāo)代入反比例函數(shù)解析式中求出m的值,即可確定出反比例解析式;

(2)設(shè)一次函數(shù)與x軸交點(diǎn)為D點(diǎn),過A作AE垂直于x軸,由△ABC面積=△BDN面積-△ADE面積-梯形AECN面積,求出即可。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)A.當(dāng)y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時,y1和y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案