分析 分兩種情況考慮:當兩條弦位于圓心O一側(cè)時,如圖1所示,過O作OE⊥CD,交CD于點E,交AB于點F,連接OA,OC,由AB∥CD,得到OE⊥AB,利用垂徑定理得到E與F分別為CD與AB的中點,在直角三角形AOF中,利用勾股定理求出OF的長,在三角形COE中,利用勾股定理求出OE的長,由OE-OF即可求出EF的長;當兩條弦位于圓心O兩側(cè)時,如圖2所示,同理由OE+OF求出EF的長即可.
解答 解:分兩種情況考慮:
當兩條弦位于圓心O一側(cè)時,如圖1所示,
過O作OE⊥CD,交CD于點E,交AB于點F,連接OA,OC,
∵AB∥CD,∴OE⊥AB,
∴E、F分別為CD、AB的中點,
∴CE=DE=$\frac{1}{2}$CD=3,AF=BF=$\frac{1}{2}$AB=4,
在Rt△AOF中,OA=5,AF=4,
根據(jù)勾股定理得:OF=$\sqrt{O{A}^{2}-A{F}^{2}}$=3,
在Rt△COE中,OC=5,CE=3,
根據(jù)勾股定理得:OE=$\sqrt{O{C}^{2}-C{E}^{2}}$=4,
則EF=OE-OF=4-3=1;
當兩條弦位于圓心O兩側(cè)時,如圖2所示,
同理可得EF=4+3=7,
綜上,弦AB與CD的距離為1或7.
故答案為:1或7.
點評 此題考查了垂徑定理,勾股定理,利用了分類討論的思想,熟練掌握垂徑定理是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ab>0 | B. | a+b>0 | C. | |a|-|b|<0 | D. | a-b<0 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com