如圖,在平面直角坐標(biāo)系中,O為原點,每個小方格的邊長為1個單位長度.在第一象限內(nèi)有橫、縱坐標(biāo)均為整數(shù)的A、B兩點,且OA=OB=
(1)寫出A、B兩點的坐標(biāo);
(2)畫出線段AB繞點O旋轉(zhuǎn)一周所形成的圖形,并求其面積(結(jié)果保留π).

【答案】分析:(1)設(shè)A(x,y),根據(jù)勾股定理列方程,再結(jié)合在第一象限內(nèi),且橫、縱坐標(biāo)均為整數(shù)求解;
(2)根據(jù)(1)中的點的坐標(biāo)進(jìn)行畫圖,顯然求的是圓環(huán)的面積.
解答:解:(1)設(shè)A(x,y).根據(jù)題意,得
x2+y2=10,
又在第一象限內(nèi),橫、縱坐標(biāo)均為整數(shù),
∴x=3或1,y=1或3.
∴A、B兩點坐標(biāo)分別為A(3,1)、B(1,3)
或A(1,3)、B(3,1).

(2)(如圖)過O作CO⊥AB,垂足為C,
由題意得:大圓半徑,
小圓半徑
∴S圓環(huán)=
點評:此題綜合了點的坐標(biāo)和圓的知識,注意數(shù)形結(jié)合的思想解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案