如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3).

(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,請求出出點(diǎn)P的坐標(biāo).
(1);(2)(-4,5)或(2,5)

試題分析:(1)利用待定系數(shù)法把A(1,0),C(0,-3)代入二次函數(shù)中,即可算出b、c的值,進(jìn)而得到函數(shù)的解析式;
(2)首先求出A、B兩點(diǎn)坐標(biāo),再算出AB的長,再設(shè)P(m,n),根據(jù)△ABP的面積為10可以計(jì)算出n的值,然后再利用二次函數(shù)解析式計(jì)算出m的值即可得到P點(diǎn)坐標(biāo).
試題解析:(1)∵二次函數(shù)過點(diǎn)A(1,0),C(0,-3),
,解得
∴二次函數(shù)的解析式為;
(2)∵當(dāng)時(shí), ,解得,;
∴A(1,0),B(-3,0),
∴AB=4,
設(shè)P(m,n),
∵△ABP的面積為10,
•AB•|n|=10,解得
當(dāng)時(shí),,解得或2,
∴P(-4,5)(2,5);
當(dāng)時(shí),,方程無解,
故P(-4,5)或(2,5).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過(0,-1),(3,2)兩點(diǎn).求它的解析式及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:二次函數(shù)y=x2-4x+3.
(1)將y=x2-4x+3化成的形式;
(2)求出該二次函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)當(dāng)x取何值時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一條拋物線)與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).若點(diǎn)M、N的坐標(biāo)分別為(0,—2)、(4,0),拋物線與直線MN始終有交點(diǎn),線段AB的長度的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)系中,拋物線=2x2圖像不動(dòng),如果把X軸向下平移一個(gè)單位,把Y軸向右平移3個(gè)單位,則此時(shí)拋物線的解析式為(   )
A.y=2(x+3)2+1B.y=2(x+1)2-3
C.y=2(x-3)2+1D.y=2(x-1)2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的最小值是(     )
A.1   B.-1  C.3 D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知二次函數(shù)y=x2+bx+c的圖象如圖所示,若y<0,則x的取值范圍是
A.-1<x<4 B.-1<x<3
C.x<-1或x>4D.x<-1或x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正確的結(jié)論是( 。
A.①②B.①③C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果拋物線經(jīng)過點(diǎn)和點(diǎn),那么的大小關(guān)系是___(填寫“>”或“<”或“=”).

查看答案和解析>>

同步練習(xí)冊答案