如圖,⊙O為△ABC的內(nèi)切圓,∠C=90°,BO的延長線交AC于點(diǎn)D,若BC=3,CD=1,則⊙O的半徑等于         

試題分析:可輔助線由相似比解答;過點(diǎn)O作OE⊥BC,交BC于E,∵⊙O為△ABC的內(nèi)切圓∴圓心到三邊到距離等于半徑長,∴△BOE∽△BDC,∴BE:BC=OE:CD,即(3-r):3=r:1,解得r=
點(diǎn)評(píng):熟知上述定義性質(zhì),結(jié)合題意易求之。本題難度不大,作輔助線是解題到關(guān)鍵,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點(diǎn),點(diǎn)A(3,0),B(0.4),以點(diǎn)A為旋轉(zhuǎn)中心,把△ABO順時(shí)針旋轉(zhuǎn),得△ACD.記旋轉(zhuǎn)角為α.∠ABO為β.

(I )如圖①,當(dāng)旋轉(zhuǎn)后點(diǎn)D恰好落在AB邊上時(shí),求點(diǎn)D的坐標(biāo);
(II)如圖②,當(dāng)旋轉(zhuǎn)后滿足BC∥x軸時(shí),求α與β之間的數(shù)量關(guān)系:
(III)當(dāng)旋轉(zhuǎn)后滿足∠AOD=β時(shí),求直線CD的解析式(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,AB=AC,D為BC的中點(diǎn),以D為頂點(diǎn)作∠MDN=∠B.

(1)如圖(1)當(dāng)射線DN經(jīng)過點(diǎn)A時(shí),DM交AC邊于點(diǎn)E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點(diǎn)D沿逆時(shí)針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.
(3)在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的時(shí),求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明同學(xué)發(fā)現(xiàn)自己的一本書的寬與長之比為黃金比.已知這本書的長為20cm,則它的寬約為(    )
A.12.36cmB.13.6cmC.32.36cmD.7.64cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在同一時(shí)刻,身高1.6米的小強(qiáng)在陽光下的影長為0.8米,一棵大樹的影長為4.8米,則樹的高度為
A.10米B.9.6米C.6.4米D.4.8米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知∠ACB=∠CBD=90°,AC=8,CB=2,要使圖中的兩個(gè)直角三角形相似,則BD的長應(yīng)為(    ).
A.B.8C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在鈍角三角形ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D從A點(diǎn)出發(fā)到B點(diǎn)止,動(dòng)點(diǎn)E從C點(diǎn)出發(fā)到A點(diǎn)止.點(diǎn)D運(yùn)動(dòng)的速度為1cm/秒,點(diǎn)E運(yùn)動(dòng)的速度為2cm/秒.如果兩點(diǎn)同時(shí)運(yùn)動(dòng),那么當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),運(yùn)動(dòng)的時(shí)間是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC邊上的中點(diǎn),N是AB邊上的點(diǎn)(不與端點(diǎn)重合),M是OB邊上的點(diǎn),且MN∥AO,延長CA與直線MN相交于點(diǎn)D,G點(diǎn)是AB延長線上的點(diǎn),且BG=AN,連接MG,設(shè)AN=x,BM=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)連接CN,當(dāng)以DN為半徑的⊙D和以MG為半徑的⊙M外切時(shí),求∠ACN的正切值;
(3)當(dāng)△ADN與△MBG相似時(shí),求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,E是BC的中點(diǎn),連接AE,過點(diǎn)E作EF⊥AE交DC于點(diǎn)F,連接AF.設(shè)=k,下列結(jié)論:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)當(dāng)k=1時(shí),△ABE∽△ADF,其中結(jié)論正確的是( 。
A.(1)(2)(3)B.(1)(3)C.(1)(2)D.(2)(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案