(2013•安徽模擬)如圖,△ABC的三條內(nèi)角平分線相交于點O,過點O作OE⊥BC于E點,
(1)求證:∠BOD=∠COE.
(2)如果AB=17,AC=8,BC=15,利用三角形內(nèi)心性質(zhì)及相關知識,求OE長.
分析:(1)在△AOF中,利用三角形的內(nèi)角和定理,以及角平分線的定義,可以利用∠ACB表示出∠AOF,則∠BOD即可得到,然后在直角△OCE中,利用直角三角形的兩個內(nèi)角互余以及角平分線的定義,即可利用∠ACB表示出∠COE,從而證得結(jié)論.
(2)先判斷為直角三角形,用面積法或直角三角形內(nèi)切圓半徑公式求出OE=3.
解答:(1)證明:∵∠AFO=∠FBC+∠ACB=
1
2
∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
1
2
∠BAC+
1
2
∠ABC+∠ACB]
=180°-[
1
2
(∠BAC+∠ABC)+∠ACB]
=180°-[
1
2
(180°-∠ACB)+∠ACB]
=180°-[90°+
1
2
∠ACB]
=90°-
1
2
∠ACB,
∴∠BOD=∠AOF=90°-
1
2
∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
1
2
∠ACB,
∴∠BOD=∠COE.

(2)解:∵AB=17,AC=8,BC=15,
∴AC2+BC2=289,
AB2=289,
∴AC2+BC2=AB2,
∴△ABC為直角三角形,
∴EO=
8+15-17
2
=3.
點評:本題主要考查了角平分線的定義,三角形的外角的性質(zhì)以及三角形的內(nèi)角和定理以及直角三角形內(nèi)切圓的半徑公式等知識,正確求得∠AOF是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)若關于x的方程2x-a=x-2的解為x=3,則字母a的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)函數(shù)y=
4x+3  (x≤0)
x+3    (0<x≤1)
-x+5  (x>1)
的最大值為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)
16
的平方根是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.

(1)如點P為銳角△ABC的費馬點.且∠ABC=60°,PA=3,PC=4,求PB的長.
(2)如圖(2),在銳角△ABC外側(cè)作等邊△ACB′連結(jié)BB′.求證:BB′過△ABC的費馬點P,且BB′=PA+PB+PC.
(3)已知銳角△ABC,∠ACB=60°,分別以三邊為邊向形外作等邊三角形ABD,BCE,ACF,請找出△ABC的費馬點,并探究S△ABC與S△ABD的和,S△BCE與S△ACF的和是否相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽模擬)(1)圖①至圖③中,AB=
2
,旋轉(zhuǎn)角∠CAB=30°.
思考:
如圖①,當線段AB繞點A旋轉(zhuǎn)至AC的位置時,則點B所經(jīng)過的路徑長為
2
π
6
2
π
6
;圖中陰影部分的面積為
π
6
π
6


探究一
如圖②,當線段AB變?yōu)橐訟B為直徑的半圓時,將其繞點A旋轉(zhuǎn)至圖②中位置,則圖中陰影部分的面積為
π
6
π
6
;
如圖③,當線段AB變?yōu)榈妊苯侨切蜛DB時,∠ADB=90°,將其繞點A旋轉(zhuǎn),使點B到點C,點D到點E.求圖中陰影部分的面積S.
(2)探究二
圖④中,一個不規(guī)則的圖形,其中AB=a,AD=b,點B旋轉(zhuǎn)到點C,旋轉(zhuǎn)角∠CAB=n°(0°<n<180°),點D旋轉(zhuǎn)到點E,則點B所經(jīng)過的路徑長為
nπa
180
nπa
180
;圖中陰影部分的面積為
nπ(a2-b2)
360
nπ(a2-b2)
360

查看答案和解析>>

同步練習冊答案