若直線數(shù)學公式與x軸正方向的夾角為α,則cosα等于


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:根據(jù)解析式畫出圖形,運用三角函數(shù)的定義即可得出cosα的值.
解答:解:畫出直線解析式得:
由圖可得0A=3,OB=4,AB=5.
∴可得cosα=
故選C.
點評:本題考查了一次函數(shù)及解直角三角形的應(yīng)用,關(guān)鍵在于畫出圖形,這樣既直觀又不容易出錯.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為
AB
(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為|
AB
|.顯然,有向線段
AB
和有向線段
BA
長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段
OP
,其方向與x軸正方向相同,長度(或模)是|
OP
|=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出
OA
有向線段,使得
OA
=3
2
,
OA
與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段
OB
的終點B的坐標為(3,
3
),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,|
MA
|+|
AP
|=|
MP
|
成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+(a+c)x+c的頂點B在第一象限,它與y軸正半軸交于點A,與x軸交于精英家教網(wǎng)點D,C,點C在x軸正方向.
(1)求點D的坐標;
(2)若直線AB和x軸負方向交于點F,∠BFC=45°,比較DF:DO和tan∠BCF的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在平面直角坐標系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運動,當點P達到點C時,點P停止運動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當點P在線段BA上運動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點P沿折線B→A→C運動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCE中,BC∥AE且AB=BC,以點E為坐標原點建立平面直角坐標系,若將梯形ABCD沿AC折疊,使點B恰好落在x軸上點D位置,過C、D兩點的直線與y軸交于點F.
(1)試判斷四邊形ABCD是怎樣的特殊四邊形,并說明你的理由;
(2)如果∠BAE=60°,AB=2cm,那么在y軸上是否存在一點P,使以P、D、F為頂點的三角形構(gòu)成等腰三角形,若存在,請求出所有可能的P點坐標,若不存在,請說明理由;
(3)在(2)的條件下,若將△EDF沿x軸正方向以1cm/s的速度平移到點E與點A重合時為止,設(shè)△EDF在平移過程中與△ECA重合部分的面積為S,平移的時間為x秒,試求出S與x之間的函數(shù)關(guān)系式及自變量范圍,并求出何時S有最大值,最大值是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系中,OA=OB=OC=2,點P從C點出發(fā),沿y軸正方向以1個單位/秒的速度向上運動,連接PA、PB,精英家教網(wǎng)D為AC的中點.
(1)求直線BC的解析式;
(2)設(shè)點P運動的時間為t秒,問當t為何值時,DB與DP垂直且相等?
(3)如圖2,若PA=AB,在第一象限內(nèi)有一動點Q,連接QA、QB、QP,且∠PQA=60°,問:當Q在第一象限內(nèi)運動時,∠APQ+∠ABQ的度數(shù)和是否會發(fā)生改變?若不改變,請說明理由,并求其值.

查看答案和解析>>

同步練習冊答案