若a、b滿(mǎn)足,則求代數(shù)式3a2b-[2ab2-2(ab-a2b)+ab]+3ab2的值.

 

ab2+ab    

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a,b,c滿(mǎn)足:a+b+2c=1,a2+b2+6c+
3
2
=0
,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,
設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t

a2+b2+6c+
3
2
=0

將①代入②得:(
1-2c
2
+t)2+(
1-2c
2
-t)2+6c+
3
2
=0

整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時(shí)代入①得:a=
3
2
,b=
3
2
.∴a=b=
3
2
,c=-1

以上解法是采用“均值換元”解決問(wèn)題.一般地,若實(shí)數(shù)x,y滿(mǎn)足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t
,合理運(yùn)用這種換元技巧,可順利解決一些問(wèn)題.現(xiàn)請(qǐng)你根據(jù)上述方法試解決下面問(wèn)題:
已知實(shí)數(shù)a,b,c滿(mǎn)足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a,b,c滿(mǎn)足:數(shù)學(xué)公式,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,
設(shè)數(shù)學(xué)公式
數(shù)學(xué)公式
將①代入②得:數(shù)學(xué)公式
整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時(shí)代入①得:數(shù)學(xué)公式.∴數(shù)學(xué)公式
以上解法是采用“均值換元”解決問(wèn)題.一般地,若實(shí)數(shù)x,y滿(mǎn)足x+y=m,則可設(shè)數(shù)學(xué)公式,合理運(yùn)用這種換元技巧,可順利解決一些問(wèn)題.現(xiàn)請(qǐng)你根據(jù)上述方法試解決下面問(wèn)題:
已知實(shí)數(shù)a,b,c滿(mǎn)足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年江蘇省南京市高淳縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀下列材料,然后解答后面的問(wèn)題:
我們知道二元一次方程組的求解方法是消元法,即可將它化為一元一次方程來(lái)解,可求得方程組有唯一解.
我們也知道二元一次方程2x+3y=12的解有無(wú)數(shù)個(gè),而在實(shí)際問(wèn)題中我們往往只需要求出其正整數(shù)解.
下面是求二元一次方程2x+3y=12的正整數(shù)解的過(guò)程:
由2x+3y=12得:y=
∵x、y為正整數(shù),∴則有0<x<6
又y=4-為正整數(shù),則為正整數(shù),所以x為3的倍數(shù)
又因?yàn)?<x<6,從而x=3,代入:y=4-=2
∴2x+3y=12的正整數(shù)解為
問(wèn)題:(1)若 為正整數(shù),則滿(mǎn)足條件的x的值有幾個(gè).( )
A、2    B、3    C、4   D、5
      (2)九年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,花費(fèi)35元購(gòu)買(mǎi)了筆記本和鋼筆兩種獎(jiǎng)品,其中筆記本的單價(jià)為3元/本,鋼筆單價(jià)為5元/支,問(wèn)有幾種購(gòu)買(mǎi)方案?
      (3)試求方程組 的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年河北省石家莊市藁城市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a,b,c滿(mǎn)足:,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,
設(shè)

將①代入②得:
整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時(shí)代入①得:.∴
以上解法是采用“均值換元”解決問(wèn)題.一般地,若實(shí)數(shù)x,y滿(mǎn)足x+y=m,則可設(shè),合理運(yùn)用這種換元技巧,可順利解決一些問(wèn)題.現(xiàn)請(qǐng)你根據(jù)上述方法試解決下面問(wèn)題:
已知實(shí)數(shù)a,b,c滿(mǎn)足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•藁城市一模)閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a,b,c滿(mǎn)足:,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,
設(shè)

將①代入②得:
整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時(shí)代入①得:.∴
以上解法是采用“均值換元”解決問(wèn)題.一般地,若實(shí)數(shù)x,y滿(mǎn)足x+y=m,則可設(shè),合理運(yùn)用這種換元技巧,可順利解決一些問(wèn)題.現(xiàn)請(qǐng)你根據(jù)上述方法試解決下面問(wèn)題:
已知實(shí)數(shù)a,b,c滿(mǎn)足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案