如圖,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,BC⊥AC,AC與BD交于點E,AD=6,CE=,tan∠BEC=,求BC、DE的長及四邊形ABCD的面積.

【答案】分析:過點D作DF⊥AC于F,構(gòu)造Rt△ADF,然后利用三角函數(shù)求出EF、AC、DE的長,再計算出S△ACD和S△ACB
,即為S四邊形ABCD
解答:解:如圖,過點D作DF⊥AC于F.
∵∠DAB=60°,AC平分∠DAB,
∴∠DAC=∠BAC=30°.
∵BC⊥AC,
∴∠AFD=∠ACB=90°.
,
BC=CE•tan∠BEC=×=4.


∴S四邊形ABCD=S△ACD+S△ACB
===
點評:本題考查了解直角三角形和勾股定理,正確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案