已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,
①求證:∠ADB=∠AFC;②請直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?若不成立,請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關系,并寫出證明過程;
(3)如圖3,當點D在邊CB的延長線上時,且點A、F分別在直線BC的異側(cè),其他條件不變,請補全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關系.
(1)可通過證明△ABD≌△ACF.∴∠ADB=∠AFC.
(2)結(jié)論∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之間的等量關系是:
∠AFC=∠ACB∠DAC(3),,1,
【解析】
試題分析:(1)①證明:∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°.
∵∠DAF=60°,∴∠BAC=∠DAF.∴∠BAD=∠CAF.
∵四邊形ADEF是菱形,∴AD=AF.
∴△ABD≌△ACF.∴∠ADB=∠AFC.
②結(jié)論:∠AFC=∠ACB+∠DAC成立.
(2)結(jié)論∠AFC=∠ACB+∠DAC不成立.
∠AFC、∠ACB、∠DAC之間的等量關系是:
∠AFC=∠ACB∠DAC(或這個等式的正確變式).
證明:∵△ABC為等邊三角形,
∴AB=AC,∠BAC= 60°.
∵∠DAF = 60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF.
∵四邊形ADEF是菱形,∴AD=AF.
∴△ABD≌△ACF,∴∠ADC=∠AFC.
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB-∠DAC.
(3)補全圖形如下圖:
∠AFC、∠ACB、∠DAC之間的等量關系是:∠AFC=2∠ACB-∠DAC(或∠AFC+∠DAC+∠ACB=180°以及這兩個等式的正確變式).
考點:全等三角形性質(zhì)和判定及四邊形性質(zhì)
點評:本題難度較低,主要考查學生對:全等三角形性質(zhì)和判定及四邊形性質(zhì)知識點的掌握,為中考?碱}型,要求學生牢固掌握解題技巧。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com