(2007•內(nèi)江)如圖,△ACB和△ECD都是等腰直角三角形,A,C,D三點在同一直線上,連接BD,AE,并延長AE交BD于F.
(1)求證:△ACE≌△BCD;
(2)直線AE與BD互相垂直嗎?請證明你的結(jié)論.

【答案】分析:(1)根據(jù)SAS判定△ACE≌△BCD,從而得到∠EAC=∠DBC,根據(jù)角之間的關(guān)系可證得AF⊥BD.
(2)互相垂直,只要證明∠AFD=90°,從而轉(zhuǎn)化為證明∠EAC+∠CDB=90即可.
解答:(1)證明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,∠ACE=∠BCD=90°,
在△ACE和△BCD,

∴△ACE≌△BCD(SAS);

(2)解:直線AE與BD互相垂直,理由為:
證明:∵△ACE≌△BCD,
∴∠EAC=∠DBC,
又∵∠DBC+∠CDB=90°,
∴∠EAC+∠CDB=90°,
∴∠AFD=90°,
∴AF⊥BD,
即直線AE與BD互相垂直.
點評:此題主要考查學(xué)生對全等三角形的判定及直角三角形的判定的掌握情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點在拋物線y=x2上,DC交y軸于N點,一條直線OE與AB交于E點,與DC交于F點,如果E點的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省中考模擬數(shù)學(xué)試卷(4)(金臺中學(xué) 楊宏舉)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點在拋物線y=x2上,DC交y軸于N點,一條直線OE與AB交于E點,與DC交于F點,如果E點的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省無錫市宜興市初三數(shù)學(xué)適應(yīng)性練習(xí)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點在拋物線y=x2上,DC交y軸于N點,一條直線OE與AB交于E點,與DC交于F點,如果E點的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省綏化市中考數(shù)學(xué)預(yù)測試卷(3)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點在拋物線y=x2上,DC交y軸于N點,一條直線OE與AB交于E點,與DC交于F點,如果E點的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省內(nèi)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點在拋物線y=x2上,DC交y軸于N點,一條直線OE與AB交于E點,與DC交于F點,如果E點的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

同步練習(xí)冊答案