如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達(dá)終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ.
(1)點______(填M或N)能到達(dá)終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時,S的值最大;
(3)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標(biāo);若不存在,說明理由.

【答案】分析:(1)(BC÷點N的運動速度)與(OA÷點M的運動速度)可知點M能到達(dá)終點.
(2)經(jīng)過t秒時可得NB=y,OM-2t.根據(jù)∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S與t的函數(shù)關(guān)系式后根據(jù)t的值求出S的最大值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
解答:解:(1)點M.(1分)

(2)經(jīng)過t秒時,NB=t,OM=2t,
則CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,(2分)
∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2.(3分)
∴S=-t2+t+2=-t2+t-++2=-(t-2+,(5分)
∵0≤t<2
∴當(dāng)時,S的值最大.(6分)

(3)存在.(7分)
設(shè)經(jīng)過t秒時,NB=t,OM=2t
則CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°(8分)
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高
∴PQ是底邊MA的中線
∴PQ=AP=MA
∴1+t=(4-2t)
∴t=
∴點M的坐標(biāo)為(1,0)(10分)
②若∠QMA=90°,此時QM與QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴點M的坐標(biāo)為(2,0).(12分)
點評:本題考查的是二次函數(shù)的有關(guān)知識,考生還需注意的是要學(xué)會全面分析問題的可行性繼而解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達(dá)終點時,另一個動點也隨之停止運精英家教網(wǎng)動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達(dá)終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的正方形紙片.點O與坐標(biāo)原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標(biāo)為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落精英家教網(wǎng)在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標(biāo);
(2)求折痕EF所在直線的解析式;
(3)設(shè)點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當(dāng)點E到達(dá)點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標(biāo);
(2)在(1)的條件下,設(shè)△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標(biāo),若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數(shù)y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標(biāo)為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數(shù)精英家教網(wǎng)是( 。
(1)直線OA的函數(shù)解析式為y=
4
3
x

(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標(biāo)為(S-5,4)
(4)若點P在線段BC上時,P點的坐標(biāo)為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案