【題目】如圖所示,已知在△ABC中,∠C=90°,AC=5,AB=13.點D在邊AC上,且點D到邊AB和邊BC的距離相等.
(1)用直尺圓規(guī)作出點D(不寫作法,保留作圖痕跡,在圖上標注清楚點D);
(2)求△ABD的面積.
【答案】(1)詳見解析;(2).
【解析】
(1)作∠ABC的角平分線交AC于D,則根據(jù)角平分線的性質(zhì)可判斷點D到邊AB和邊BC的距離相等;
(2)過點D作DE⊥AB于E,如圖,利用勾股定理計算出BC=12,設(shè)DE=x,則DC=x,利用S△ADB+S△BCD=S△ABC得到x13+x12=125,然后解方程求出x即可.
(1)如圖,點D就是所要求作的點;
(2)過點D作DE⊥AB于E,如圖,
在Rt△ABC中,BC==12,
設(shè)DE=x,則DC=x,
∵S△ADB+S△BCD=S△ABC,
∴x13+x12=125,
∴x=,
∴S△ADB=ABDE=×13×=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,若AB=17,BD=12,
(1)求證:△BCD≌△ACE;
(2)求DE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點,且AB=CD,下列結(jié)論:①EG⊥FH;②四邊形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道 是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此 的小數(shù)部分我們不可能全部地寫出來,于是小明用 ﹣1來表示 的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為 的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:∵22<( )2<32 , 即2< <3,∴ 的整數(shù)部分為2,小數(shù)部分為( ﹣2). 請解答:
(1) 的整數(shù)部分是 , 小數(shù)部分是
(2)如果 的小數(shù)部分為a, 的整數(shù)部分為b,求a+b﹣ 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標平面內(nèi),已點A(3,0)、B(-5,3),將點A向左平移6個單位到達C點,將點B向下平移6個單位到達D點.
(1)寫出C點、D點的坐標:C __________,D ____________ ;
(2)把這些點按A-B-C-D-A順次連接起來,這個圖形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:
請根據(jù)以上兩圖解答下列問題:
(1)該班總?cè)藬?shù)是;
(2)根據(jù)計算,請你補全兩個統(tǒng)計圖;
(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.DE=6cm,AD=9cm,則BE的長是( )
A. 6cm B. 1.5cm C. 3cm D. 4.5cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀對人成長的影響是巨大的,一本好書往往能改變?nèi)说囊簧鐖D是某校三個年級學生人數(shù)分布扇形統(tǒng)計圖,其中八年級人數(shù)為408人,表是該校學生閱讀課外書籍情況統(tǒng)計表.請你根據(jù)圖表中的信息,解答下列問題:
圖書種類 | 頻數(shù) | 頻率 |
科普常識 | 840 | B |
名人傳記 | 816 | 0.34 |
漫畫叢書 | A | 0.25 |
其它 | 144 | 0.06 |
(1)求該校八年級的人數(shù)占全校總?cè)藬?shù)的百分率.
(2)求表中A,B的值.
(3)該校學生平均每人讀多少本課外書?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com