如圖,正方形ABCD的邊長為4,點P是AB上不與A、B重合的任意一點,作PQ⊥DP,Q在BC上,設AP=x,BQ=y,
(1)求y與x之間的函數(shù)關系式,并指出自變量x的取值范圍;
(2)求函數(shù)圖象的頂點坐標,并作出大致圖象.
(1)∵AP=x
∴BP=AB-AP=4-x
∵PQ⊥DP,即∠DPQ=90°
∴∠DPA+∠BPQ=180°-∠DPQ=90°
又∵∠DPA+∠ADP=90°
∴∠ADP=∠BPQ?tan∠ADP=tan∠BPQ?
AP
AD
=
BQ
BP
,即
x
4
=
y
4-x

∴y=-
1
4
(x-2)2+1 (0<x<4)

(2)由上面解析式可知,頂點坐標為(2,1),
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線經過A,C,D三點,且三點坐標為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個交點為B點,點F為y軸上一動點,作平行四邊形DFBG,
(1)B點的坐標為______;
(2)是否存在F點,使四邊形DFBG為矩形?如存在,求出F點坐標;如不存在,說明理由;
(3)連結FG,F(xiàn)G的長度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點,找出拋物線上滿足到E點的距離小于2的所有點的橫坐標x的范圍:______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于兩個不同的點A(-2,0)、B(4,0),與y軸交于點C(0,3),連接BC、AC,該二次函數(shù)圖象的對稱軸與x軸相交于點D.
(1)求這個二次函數(shù)的解析式、點D的坐標及直線BC的函數(shù)解析式;
(2)點Q在線段BC上,使得以點Q、D、B為頂點的三角形與△ABC相似,求出點Q的坐標;
(3)在(2)的條件下,若存在點Q,請任選一個Q點求出△BDQ外接圓圓心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2-4x+c的圖象經過點A(-1,-1)和B(3,-9).
(1)求該二次函數(shù)的解析式;
(2)填空:該拋物線的對稱軸是______;頂點坐標是______;當x=______時,y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=-x2+kx+3的圖象與x軸交于點(3,0)
(1)求函數(shù)的解析式;
(2)畫出這個函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點c(0,3).
(1)求此拋物線所對應函數(shù)的表達式;
(2)若拋物線的頂點為D,在其對稱軸右側的拋物線上是否存在點P,使得△PCD為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a>0)經過點A(-3
3
,0
),B(
3
,0
)與y軸交于點C,設拋物線的頂點為D,在△BCD中,邊CD的高為h.
(1)若c=ka,求系數(shù)k的值;
(2)當∠ACB=90°,求a及h的值;
(3)當∠ACB≥90°時,經過探究、猜想請你直接寫出h的取值范圍.
(不要求書寫探究、猜想的過程)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:a、b、c分別是△ABC的∠A、∠B、∠C的對邊(a>b).二次函數(shù)y=(x-2a)x-2b(x-a)+c2的圖象的頂點在x軸上,且sinA、sinB是關于x的方程(m+5)x2-(2m-5)x+m-8=0的兩個根.
(1)判斷△ABC的形狀,關說明理由;
(2)求m的值;
(3)若這個三角形的外接圓面積為25π,求△ABC的內接正方形(四個頂點都在三角形三邊上)的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我市某工藝廠為配合2010年上海世博會,設計了一款成本為20元/件的工藝品投放市場進行試銷.該工藝品每天試銷情況經過調查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系______;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤W最大?(利潤=銷售總價-成本總價).
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么工藝廠試銷該工藝品每天獲得的利潤最大是多少?

查看答案和解析>>

同步練習冊答案