如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD是等腰梯形,A、B在x軸上,D在y軸上,AB∥CD,AD=BC=,AB=5,CD=3,拋物線y=-x2+bx+c過(guò)A、B兩點(diǎn).
(1)求b、c;
(2)設(shè)M是x軸上方拋物線上的一動(dòng)點(diǎn),它到x軸與y軸的距離之和為d,求d的最大值;
(3)當(dāng)(2)中M點(diǎn)運(yùn)動(dòng)到使d取最大值時(shí),此時(shí)記點(diǎn)M為N,設(shè)線段AC與y軸交于點(diǎn)E,F(xiàn)為線段EC上一動(dòng)點(diǎn),求F到N點(diǎn)與到y(tǒng)軸的距離之和的最小值,并求此時(shí)F點(diǎn)的坐標(biāo).

【答案】分析:(1)根據(jù)等腰梯形的兩底的差不難得出A、B兩點(diǎn)的坐標(biāo),然后將A、B的坐標(biāo)代入拋物線的解析式中即可求出b,c的值.
(2)由于M是拋物線上的點(diǎn),可根據(jù)拋物線的解析式設(shè)出點(diǎn)M的坐標(biāo),那么它到x,y軸的距離就是橫坐標(biāo)的絕對(duì)值與縱坐標(biāo)的絕對(duì)值的和,由此可得出一個(gè)新的二次函數(shù),根據(jù)這個(gè)函數(shù)的性質(zhì)即可求出d的最大值.
(3)本題的關(guān)鍵是確定F到N點(diǎn)與到y(tǒng)軸的距離之和的最小時(shí),F(xiàn)點(diǎn)的位置.
過(guò)A作y軸的平行線AH,過(guò)F作FG⊥y軸交AH于點(diǎn)Q,過(guò)F作FK⊥x軸于K,不難得出∠CAB=45°,因此FK=AK=FQ,而OG=IA=1,因此FG=FK-1,那么F到N點(diǎn)與到y(tǒng)軸的距離之和可表示為FK+FN-1,要想使這個(gè)值最小,F(xiàn)K+FN就必須最小,因此當(dāng)這個(gè)距離和取最小值時(shí),F(xiàn),N,K應(yīng)該在一條直線上,由此F的橫坐標(biāo)和N點(diǎn)的橫坐標(biāo)相同.可先求出直線AC的解析式然后將N點(diǎn)的橫坐標(biāo)代入直線AC的解析式中即可得出F點(diǎn)的坐標(biāo).
解答:解:(1)易得A(-1,0)B(4,0),
把x=-1,y=0;
x=4,y=0分別代入y=-x2+bx+c,
,
解得.(3分)

(2)設(shè)M點(diǎn)坐標(biāo)為(a,-a2+3a+4),
d=|a|-a2+3a+4.
①當(dāng)-1<a≤0時(shí),d=-a2+2a+4=-(a-1)2+5,
所以,當(dāng)a=0時(shí),d取最大值,值為4;
②當(dāng)0<a<4時(shí),d=-a2+4a+4=-(a-2)2+8
所以,當(dāng)a=2時(shí),d取最大值,最大值為8;
綜合①、②得,d的最大值為8.
(不討論a的取值情況得出正確結(jié)果的得2分)

(3)N點(diǎn)的坐標(biāo)為(2,6),
過(guò)A作y軸的平行線AH,過(guò)F作FG⊥y軸交AH于點(diǎn)Q,過(guò)F作FK⊥x軸于K,
∵∠CAB=45°,AC平分∠HAB,
∴FQ=FK
∴FN+FG=FN+FK-1,
所以,當(dāng)N、F、K在一條直線上時(shí),F(xiàn)N+FG=FN+FK-1最小,最小值為5.
易求直線AC的函數(shù)關(guān)系式為y=x+1,把x=2代入y=x+1得y=3,
所以F點(diǎn)的坐標(biāo)為(2,3).
點(diǎn)評(píng):本題考查的是點(diǎn)的運(yùn)動(dòng),是最靈活的二次函數(shù)應(yīng)用類(lèi)的,學(xué)生接受較差.
(3)中正確的找出F點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案