(2012•大慶)如圖所示,已知△ACD和△ABE都內(nèi)接于同一個圓,則∠ADC+∠AEB+∠BAC=( 。
分析:根據(jù)∠ADC,∠AEB,∠BAC所對圓弧正好是一個圓周,利用圓周角定理得出∠ADC+∠AEB+∠BAC的度數(shù)即可.
解答:解:∵∠ADC,∠AEB,∠BAC所對圓弧正好是一個圓周,
∴∠ADC+∠AEB+∠BAC=180°.
故選:B.
點評:此題主要考查了圓周角定理,根據(jù)∠ADC,∠AEB,∠BAC所對圓弧正好是一個圓周得出答案是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•大慶)如圖所示,將一個圓盤四等分,并把四個區(qū)域分別標上I、Ⅱ、Ⅲ、Ⅳ,只有區(qū)域I為感應區(qū)域,中心角為60°的扇形AOB繞點0轉(zhuǎn)動,在其半徑OA上裝有帶指示燈的感應裝置,當扇形AOB與區(qū)域I有重疊(原點除外)的部分時,指示燈會發(fā)光,否則不發(fā)光,當扇形AOB任意轉(zhuǎn)動時,指示燈發(fā)光的概率為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大慶)如圖所示,△ABC中,E、F、D分別是邊AB、AC、BC上的點,且滿足
AE
EB
=
AF
FC
=
1
2
,則△EFD與△ABC的面積比為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大慶)用八個同樣大小的小立方體粘成一個大立方體如圖1,得到的幾何體的三視圖如圖2所示,若小明從八個小立方體中取走若干個,剩余小立方體保持原位置不動,并使得到的新幾何體的三視圖仍是圖2,則他取走的小立方體最多可以是
4
4
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大慶)如圖△ABC中,BC=3,以BC為直徑的⊙O交AC于點D,若D是AC中點,∠ABC=120°.
(1)求∠ACB的大;
(2)求點A到直線BC的距離.

查看答案和解析>>

同步練習冊答案