在等腰梯形ABCD中,AB∥CD,DC =" 3" cm,∠A=60°,BD平分∠ABC,則這個梯形的周長是(      )

A.21 cm;B.18 cm;C.15cm;D.12 cm;

C

解析試題分析:根據(jù)題意,可知∠A=∠ABC=60°,即可推出∠ABD=∠DBC=30°,∠ADB=90°,∠BDC=30°,因此,CD=BC=AD=3,根據(jù)含30°角的直角三角形的性質(zhì)可知AB=6,便可推出梯形的周長.
∵等腰梯形ABCD中,AB∥CD,DC=3cm,∠A=60°,
∴BC=AD,∠A=∠ABC=60°,
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠BDC=30°,
∵∠ABD=30°,∠A=60°,
∴∠ADB=90°,
∵CD=3cm,
∴CD=BC=AD=3,
∴AB=2AD=6,
∴梯形ABCD的周長=AB+BC+CD+DA=6+3+3+3=15cm.
故選擇C.
考點:本題考查的是等腰梯形的性質(zhì),含30°角的直角三角形的性質(zhì)
點評:解答本題的關鍵是熟練掌握含30°角的直角三角形的性質(zhì):直角三角形中30°角所對的直角邊等于斜邊的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,則下底BC的長為
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點P為BC邊上任意一點,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請你探索PE、PF、BG的長度之間的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E為邊BC上一點,且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當∠B=2∠DCA時,求證:四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點,MB=MC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足為O,過D作DE∥AC交BC的延長線于E.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=4,BC=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習冊答案