如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是______三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

【答案】分析:(1)拋物線的頂點必在拋物線與x軸兩交點連線的垂直平分線上,因此這個“拋物線三角形”一定是等腰三角形.
(2)觀察拋物線的解析式,它的開口向下且經(jīng)過原點,由于b>0,那么其頂點在第一象限,而這個“拋物線三角形”是等腰直角三角形,必須滿足頂點坐標(biāo)的橫、縱坐標(biāo)相等,以此作為等量關(guān)系來列方程解出b的值.
(3)由于矩形的對角線相等且互相平分,所以若存在以原點O為對稱中心的矩形ABCD,那么必須滿足OA=OB,結(jié)合(1)的結(jié)論,這個“拋物線三角形”必須是等邊三角形,首先用b′表示出AE、OE的長,通過△OAB這個等邊三角形來列等量關(guān)系求出b′的值,進而確定A、B的坐標(biāo),即可確定C、D的坐標(biāo),利用待定系數(shù)即可求出過O、C、D的拋物線的解析式.
解答:解:(1)如圖;
根據(jù)拋物線的對稱性,拋物線的頂點A必在O、B的垂直平分線上,所以O(shè)A=AB,即:“拋物線三角形”必為等腰三角形.
故填:等腰.

(2)當(dāng)拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,該拋物線的頂點(,),滿足=(b>0).
則b=2.

(3)存在.
如圖,作△OCD與△OAB關(guān)于原點O中心對稱,則四邊形ABCD為平行四邊形.
當(dāng)OA=OB時,平行四邊形ABCD是矩形,
又∵AO=AB,
∴△OAB為等邊三角形.
∴∠AOB=60°,
作AE⊥OB,垂足為E,
∴AE=OEtan∠AOB=
=(b>0).
∴b=2
∴A(,3),B(2,0).
∴C(-),D(-2,0).
設(shè)過點O、C、D的拋物線為y=mx2+nx,則
,
解得
故所求拋物線的表達式為y=x2+2x.
點評:這道二次函數(shù)綜合題融入了新定義的形式,涉及到:二次函數(shù)的性質(zhì)及解析式的確定、等腰三角形的判定和性質(zhì)、矩形的判定和性質(zhì)等知識,難度不大,重在考查基礎(chǔ)知識的掌握情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果一條拋物線經(jīng)過平移后與拋物線y=-
13
x2+2重合,且頂點坐標(biāo)為(4,-2),則它的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一條拋物線的形狀與y=-
13
x2+2的形狀相同,且頂點坐標(biāo)是(4,-2),則它的函數(shù)關(guān)系式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一條拋物線的形狀與y=-x2+2的形狀相同,且頂點坐標(biāo)是(4,-2),則它的解析式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線拋物線m:y=a(x-2)2+b(ab<0)的“拋物線三角形”是直角三角形,請求出a,b滿足的關(guān)系式;
(3)如圖,△OAB是拋物線n:y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線三角形系數(shù)”.
(1)若拋物線三角形系數(shù)為[-1,b,0]的“拋物線三角形”是等腰直角三角形,求b的值;
(2)若△OAB是“拋物線三角形”,其中點B為頂點,拋物線三角形系數(shù)為[-2,2m,0],其中m>0;且四邊形ABCD是以原點O為對稱中心的矩形,求出過O、C、D三個點的拋物線的表達式.

查看答案和解析>>

同步練習(xí)冊答案