【題目】等腰直角△ABC中,BC=AC,∠ACB=90°,將該三角形在直角坐標(biāo)系中放置.
(1)如圖(1),過點A作AD⊥x軸,當(dāng)B點為(0,1),C點為(3,0)時,求OD的長;
(2)如圖(2),將斜邊頂點A、B分別落在y軸上、x軸上,若A點為(0,1),B點為(4,0),求C點坐標(biāo);
【答案】(1)4;(2)()
【解析】
(1)通過證明△BOC≌△CDA,可得CD=OB=1,即可求OD的長;
(2)過點C作CF⊥y軸,CE⊥x軸,通過證明△ACF≌△BCE,可得BE=AF,CF=CE,可證四邊形CEOF是正方形,可得CF=OE=OF=CE,即可求點C坐標(biāo).
解:(1)∵B點為(0,1),C點為(3,0)
∴OB=1,OC=3
∵∠ACB=90°,
∴∠BCO+∠ACD=90°,且∠BCO+∠OBC=90°
∴∠ACD=∠OBC,且AC=BC,∠BOC=∠ADC=90°,
∴△BOC≌△CDA(AAS)
∴CD=OB=1
∴OD=OC+CD=4
(2)如圖,過點C作CF⊥y軸,CE⊥x軸,
∵A點為(0,1),B點為(4,0),
∴AO=1,BO=4
∵CF⊥y軸,CE⊥x軸,∠AOB=90°,
∴四邊形CEOF是矩形,
∴∠ECF=90°,
∴∠FCA+∠ACE=90°,且∠ACE+∠BCE=90°,
∴∠FCA=∠BCE,且AC=BC,∠CFA=∠CEB=90°,
∴△ACF≌△BCE(AAS)
∴BE=AF,CF=CE,
∴矩形CEOF是正方形
∴CF=OE=OF=CE,
∴OA+AF=OB﹣BE
∴2AF=OB﹣OA
∴AF=
∴OF=
∴點C(,)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,長方形的兩邊長分別為m+1,m+7;如圖②,長方形的兩邊長分別為m+2,m+4.(其中m為正整數(shù))
(1) 圖①中長方形的面積=_______________
圖②中長方形的面積=_______________
比較:______(填“<”、“=”或“>”)
(2) 現(xiàn)有一正方形,其周長與圖①中的長方形周長相等,
①求正方形的邊長(用含m的代數(shù)式表示);
②試說明:該正方形面積與圖①中長方形面積的差(即-)是定值.
(3) 在(1)的條件下,若某個圖形的面積介于、之間(不包括、)并且面積為整數(shù),這樣的整數(shù)值有且只有20個,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2-6ax+4a+3的圖像與y軸交于點A,點B是x軸上一點,其坐標(biāo)為(1,0),連接AB,tan∠ABO=2.
(1)則點A的坐標(biāo)為 , a=;
(2)過點A作AB的垂線與該二次函數(shù)的圖像交于另一點C,求點C的坐標(biāo);
(3)連接BC,過點A作直線l交線段BC于點P,設(shè)點B、點C到l的距離分別為d1、d2 , 求d1+d2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,AB∥CD,E為直線CD下方一點,BF平分∠ABE.
(1)求證:∠ABE+∠C﹣∠E=180°.
(2)如圖2,EG平分∠BEC,過點B作BH∥GE,求∠FBH與∠C之間的數(shù)量關(guān)系.
(3)如圖3,CN平分∠ECD,若BF的反向延長線和CN的反向延長線交于點M,且∠E+∠M=130°,請直接寫出∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6交x軸于A,交y軸于B.
(1)直接寫出A( , ),B( , );
(2)如圖1,點E為直線y=x+2上一點,點F為直線y=x上一點,若以A,B,E,F為頂點的四邊形是平行四邊形,求點E,F的坐標(biāo)
(3)如圖2,點C(m,n)為線段AB上一動點,D(﹣7m,0)在x軸上,連接CD,點M為CD的中點,求點M的縱坐標(biāo)y和橫坐標(biāo)x之間的函數(shù)關(guān)系式,并直接寫出在點C移動過程中點M的運動路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M在線段BC上,點E和N在線段AC上,EM∥AB,BE和MN分別平分∠ABC和∠EMC.下列結(jié)論:①∠MBN=∠MNB;②∠MBE=∠MEB;③MN∥BE.其中正確的是( )
A.①②③B.②③C.①③D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點,其中a,b,c滿足關(guān)系式|a-2|+(b-3)2=0,(c-4)2≤0.
(1)求a,b,c的值;
(2)如果在第二象限內(nèi)有一點P(m,),請用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與三角形ABC的面積相等?若存在,求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠A=30°.
(1)用直尺和圓規(guī)作AB的垂直平分線,分別交AC、AB于點E.D(保留作圖痕跡,不寫作法)
(2)猜想AC與CE之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“漢字聽寫”大賽預(yù)賽,各參賽選手的成績?nèi)缦拢▎挝唬悍郑?/span>
A班:88,91,92,93,93,93,94,98,98,100
B班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下:
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
A班 | 100 | a | 93 | 93 | c |
B班 | 99 | 95 | b | 93 | 8.4 |
(1)求表中a、b、c的值;
(2)依據(jù)數(shù)據(jù)分析表,有人說:“最高分在A班,A班的成績比B班好”,但也有人說B班的成績要好,請給出兩條支持B班成績好的理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com