【題目】如圖,的四個內角的平分線分別相交于點、、、,四邊形是怎樣的特殊四邊形?證明你的結論.
【答案】矩形,證明見解析
【解析】
由于四邊形ABCD是平行四邊形,那么AB∥CD,利用平行線的性質可得∠ABC+∠BCD=180°,而BH,CH分別平分∠ABC與∠BCD,則∠HBC=∠ABC,∠HCB=∠BCD,那么有∠HBC+∠HCB=90°,再利用三角形內角和定理可知∠H=90°,同理∠HEF=∠F=90°,利用三個內角等于90°的四邊形是矩形,那么四邊形EFGH是矩形.
四邊形EFGH是矩形,理由如下:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵BH,CH分別平分∠ABC與∠BCD,
∴∠HBC=∠ABC,∠HCB=∠BCD,
∴∠HBC+∠HCB=(∠ABC+∠BCD)=×180°=90°,
∴∠H=90°,
同理∠HEF=∠F=90°,
∴四邊形EFGH是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)購買甲、乙兩種樹苗進行綠化,已知甲種樹苗每棵30元,乙種樹苗每棵20元,且乙種樹苗棵數(shù)比甲種樹苗棵數(shù)的2倍少40棵,購買兩種樹苗的總金額為9000元.
(1)求購買甲、乙兩種樹苗各多少棵?
(2)為保證綠化效果,社區(qū)決定再購買甲、乙兩種樹苗共10棵,總費用不超過230元,求可能的購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,下列條件中,能判斷直線L1∥L2的是( )
A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù) 的圖象與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)求以A,B,C,D為頂點的四邊形的面積;
(2)在拋物線上是否存在點P,使得△ABP的面積是△ABC的面積的2倍?若存在,求出點P的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題:
(1)(﹣1)23×(π﹣3)0﹣(﹣) ﹣3;
(2)aa2a3+(﹣2a3)2﹣a8÷a2;
(3)(x+4)2﹣(x+2)(x﹣2);
(4)(a+2b﹣3c)(a﹣2b+3c).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,將一塊等腰直角三角形的直角頂點放在斜邊的中點處,將三角板繞點旋轉,三角板的兩直角邊分別交射線、于、兩點.如圖①、②、③是旋轉三角板得到的圖形中的3種情況.
(1)觀察圖①,當三角板繞點旋轉到時,我們發(fā)現(xiàn):__________.(選填“”、“”或“”)
(2)當三角板繞點旋轉到圖②所示位置時,判斷(1)題中與之間的大小關系還存在嗎?請你結合圖②說明理由.
(3)三角板繞點旋轉,是否能成為等腰三角形?若能,指出所有情況(那寫出為等腰三角形時的長);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)圖1中陰影部分面積為______,圖2中陰影部分面積為_____,對照兩個圖形的面積可以驗證________公式(填公式名稱)請寫出這個乘法公式________.
(2)應用(1)中的公式,完成下列各題:
①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;
②計算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1和∠2互為補角,∠A=∠D,求證:∠B=∠C.
請在下面的證明過程的括號內,填寫依據(jù).
證明:∵∠1與∠CGD是對頂角,
∴∠1=∠CGD( )
∵∠1+∠2=180°(已知)
∴∠2+∠CGD=180°(等量代換)
∴AE//FD( )
∴∠AEC=∠D( )
∵∠A=∠D(已知)
∴∠AEC=∠A( )
∴AB//CD( )
∴∠B=∠C( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE,BE,DE,過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+.其中正確結論的序號是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com