鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又剩下一個(gè)四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖1,?ABCD中,若AB=1,BC=2,則?ABCD為1階準(zhǔn)菱形.

(1)判斷與推理:
①鄰邊長(zhǎng)分別為2和3的平行四邊形是______階準(zhǔn)菱形;
②小明為了剪去一個(gè)菱形,進(jìn)行了如下操作:如圖2,把?ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是菱形.
(2)操作、探究與計(jì)算:
①已知?ABCD的鄰邊長(zhǎng)分別為1,a(a>1),且是3階準(zhǔn)菱形,請(qǐng)畫出?ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;
②已知?ABCD的鄰邊長(zhǎng)分別為a,b(a>b),滿足a=6b+r,b=5r,請(qǐng)寫出?ABCD是幾階準(zhǔn)菱形.
【答案】分析:(1)①根據(jù)鄰邊長(zhǎng)分別為2和3的平行四邊形經(jīng)過(guò)兩次操作,即可得出所剩四邊形是菱形,即可得出答案;
②根據(jù)平行四邊形的性質(zhì)得出AE∥BF,進(jìn)而得出AE=BF,即可得出答案;
(2)①利用3階準(zhǔn)菱形的定義,即可得出答案;
②根據(jù)a=6b+r,b=5r,用r表示出各邊長(zhǎng),進(jìn)而利用圖形得出?ABCD是幾階準(zhǔn)菱形.
解答:解:(1)①利用鄰邊長(zhǎng)分別為2和3的平行四邊形經(jīng)過(guò)兩次操作,所剩四邊形是邊長(zhǎng)為1的菱形,
故鄰邊長(zhǎng)分別為2和3的平行四邊形是2階準(zhǔn)菱形;
故答案為:2;
②由折疊知:∠ABE=∠FBE,AB=BF,
∵四邊形ABCD是平行四邊形,
∴AE∥BF,
∴∠AEB=∠FBE,
∴∠AEB=∠ABE,
∴AE=AB,
∴AE=BF,
∴四邊形ABFE是平行四邊形,
∴四邊形ABFE是菱形;

(2)
①如圖所示:
,
②答:10階菱形,
∵a=6b+r,b=5r,
∴a=6×5r+r=31r;
如圖所示:

故?ABCD是10階準(zhǔn)菱形.
點(diǎn)評(píng):此題主要考查了圖形的剪拼以及菱形的判定,根據(jù)已知n階準(zhǔn)菱形定義正確將平行四邊形分割是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們把對(duì)稱中心重合,四邊分別平行的兩個(gè)正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.一條直線l與方形環(huán)的邊線有四個(gè)交點(diǎn)M、M′、N′、N、小明在探究線段MM′與N′N的數(shù)量關(guān)系時(shí),從點(diǎn)M′、N′向?qū)呑鞔咕段M′E、N′F,利用三角形全等、相似及銳角三角函數(shù)等相關(guān)知識(shí)解決了問(wèn)題、請(qǐng)你參考小明的思路解答下列問(wèn)題:
(1)當(dāng)直線l與方形環(huán)的對(duì)邊相交時(shí)(如圖1),直線l分別交AD、A′D'、B′C′、BC于M、M′、N′、N,小明發(fā)現(xiàn)MM′與N′N相等,請(qǐng)你幫他說(shuō)明理由;
(2)當(dāng)直線l與方形環(huán)的鄰邊相交時(shí)(如圖2),l分別交AD、A′D′、D′C′、DC于M、M′、N′、N,l與DC的夾角為α,你認(rèn)為MM′與N′N還相等嗎?若相等,說(shuō)明理由;若不相等,求出
MM′N′N
的值(用含α的三角函數(shù)表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(9分)我們把對(duì)稱中心重合,四邊分別平行的兩個(gè)正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.

一條直線l與方形環(huán)的邊線有四個(gè)交點(diǎn)、、.小明在探究線段 的數(shù)量關(guān)系時(shí),從點(diǎn)向?qū)呑鞔咕段、,利用三角形全等、相似及銳角三角函數(shù)等相關(guān)知識(shí)解決了問(wèn)題.請(qǐng)你參考小明的思路解答下列問(wèn)題:

⑴當(dāng)直線l與方形環(huán)的對(duì)邊相交時(shí)(如圖1),直線l分別交、、、、、,小明發(fā)現(xiàn)相等,請(qǐng)你幫他說(shuō)明理由;

⑵當(dāng)直線l與方形環(huán)的鄰邊相交時(shí)(如圖2),l分別交、、、、、,l的夾角為,你認(rèn)為還相等嗎?若     相等,說(shuō)明理由;若不相等,求出的值(用含的三角函數(shù)表示).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(9分)我們把對(duì)稱中心重合,四邊分別平行的兩個(gè)正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.

一條直線l與方形環(huán)的邊線有四個(gè)交點(diǎn)、.小明在探究線段 的數(shù)量關(guān)系時(shí),從點(diǎn)、向?qū)呑鞔咕段、,利用三角形全等、相似及銳角三角函數(shù)等相關(guān)知識(shí)解決了問(wèn)題.請(qǐng)你參考小明的思路解答下列問(wèn)題:
⑴當(dāng)直線l與方形環(huán)的對(duì)邊相交時(shí)(如圖1),直線l分別交、、、、、,小明發(fā)現(xiàn)相等,請(qǐng)你幫他說(shuō)明理由;
⑵當(dāng)直線l與方形環(huán)的鄰邊相交時(shí)(如圖2),l分別交、、、,l的夾角為,你認(rèn)為還相等嗎?若    相等,說(shuō)明理由;若不相等,求出的值(用含的三角函數(shù)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省第三初級(jí)中學(xué)九年級(jí)課程結(jié)束考試數(shù)學(xué)卷 題型:解答題

(9分)我們把對(duì)稱中心重合,四邊分別平行的兩個(gè)正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.

一條直線l與方形環(huán)的邊線有四個(gè)交點(diǎn)、、.小明在探究線段 的數(shù)量關(guān)系時(shí),從點(diǎn)、向?qū)呑鞔咕段,利用三角形全等、相似及銳角三角函數(shù)等相關(guān)知識(shí)解決了問(wèn)題.請(qǐng)你參考小明的思路解答下列問(wèn)題:
⑴當(dāng)直線l與方形環(huán)的對(duì)邊相交時(shí)(如圖1),直線l分別交、、、、,小明發(fā)現(xiàn)相等,請(qǐng)你幫他說(shuō)明理由;
⑵當(dāng)直線l與方形環(huán)的鄰邊相交時(shí)(如圖2),l分別交、、、、、,l的夾角為,你認(rèn)為還相等嗎?若    相等,說(shuō)明理由;若不相等,求出的值(用含的三角函數(shù)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省九年級(jí)課程結(jié)束考試數(shù)學(xué)卷 題型:解答題

(9分)我們把對(duì)稱中心重合,四邊分別平行的兩個(gè)正方形之間的部分叫“方形環(huán)”,易知方形環(huán)四周的寬度相等.

一條直線l與方形環(huán)的邊線有四個(gè)交點(diǎn)、、、.小明在探究線段 的數(shù)量關(guān)系時(shí),從點(diǎn)、向?qū)呑鞔咕段、,利用三角形全等、相似及銳角三角函數(shù)等相關(guān)知識(shí)解決了問(wèn)題.請(qǐng)你參考小明的思路解答下列問(wèn)題:

⑴當(dāng)直線l與方形環(huán)的對(duì)邊相交時(shí)(如圖1),直線l分別交、、、,小明發(fā)現(xiàn)相等,請(qǐng)你幫他說(shuō)明理由;

⑵當(dāng)直線l與方形環(huán)的鄰邊相交時(shí)(如圖2),l分別交、、、、,l的夾角為,你認(rèn)為還相等嗎?若     相等,說(shuō)明理由;若不相等,求出的值(用含的三角函數(shù)表示).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案