【題目】已知等邊ABCADBCAD=12,若點(diǎn)P在線段AD上運(yùn)動(dòng),當(dāng)AP+BP的值最小時(shí),AP的長為( .

A.4B.8C.10D.12

【答案】B

【解析】

過點(diǎn)PPDACD,過點(diǎn)BBFACF,根據(jù)等邊三角形的性質(zhì)可得:∠CAD=ABF=CBF=BAC=30°,從而可得:PD=AP,故AP+BP的最小值即為PDBP的最小值,根據(jù)垂線段最短的性質(zhì)即可判斷BF即為PDBP的最小值,再根據(jù)30°所對(duì)的直角邊是斜邊的一半求AP即可.

解:過點(diǎn)PPDACD,過點(diǎn)BBFACF,如下圖所示

∵等邊ABCADBC

∴∠CAD=ABF=CBF=BAC=30°,

PD=AP

AP+BP的最小值即為PDBP的最小值

∵在連接直線外一點(diǎn)與直線上各點(diǎn)的線段中,垂線段最短

BF即為PDBP的最小值

BFAD的交點(diǎn)即為P點(diǎn),如下圖所示

∵∠CAD=ABF=CBF =30°

AP= BPPD=BP=AP

AD=12

APPD=12

APAP=12

解得:AP=8

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)全體同學(xué)參加了愛心捐款活動(dòng),該校隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖:

1)求出本次抽查的學(xué)生人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)捐款金額的眾數(shù)是___________元,中位數(shù)是_____________;

3)請(qǐng)估計(jì)全校八年級(jí)1000名學(xué)生,捐款20元的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△ABC中,AC=BC,BE平分∠ABC,ADBE的延長線于點(diǎn)D,若AD=2,則△ABE的面積為( ).

A.4B.6C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1.

b24ac;

4a﹣2b+c<0;

不等式ax2+bx+c>0的解集是x≥3.5;

若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2

上述4個(gè)判斷中,正確的是(  )

A.①② B①④ C①③④ D②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是菱形,DFAB于點(diǎn)F,BECD于點(diǎn)E.

(1)求證:AF=CE;

(2)若DE=2,BE=4,求sinDAF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·湖州)如圖,已知拋物線經(jīng)過點(diǎn)(0,-3),請(qǐng)你確定一個(gè)

b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間。你確定的b的值是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)與圖形,若點(diǎn)為圖形上任意一點(diǎn), 點(diǎn)關(guān)于第一、三象限角平分線的對(duì)稱點(diǎn)為 ,且線段的中點(diǎn)為,則稱點(diǎn)是圖形關(guān)于點(diǎn)的“關(guān)聯(lián)點(diǎn)”

1)如圖1,若點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的關(guān)聯(lián)點(diǎn),則點(diǎn)的坐標(biāo)為

2)如圖2,在中,

①將線段向右平移個(gè)單位長度,若平移后的線段上存在兩個(gè)關(guān)于點(diǎn)的關(guān)聯(lián)點(diǎn),則的取值范圍是

②已知點(diǎn)和點(diǎn),若線段上存在關(guān)于點(diǎn)的關(guān)聯(lián)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案