如圖,已知Rt△AOB在平面直角坐標(biāo)系中,∠AOB=90°,∠BAO=30°,且A的坐標(biāo)為(3,0),⊙C的圓心坐標(biāo)為(-1,0),半徑為1,若D是⊙C上的一個動點,線段DA與y軸交與點E.求:
(1)過點A、B、C的二次函數(shù)關(guān)系式;
(2)求△ABE面積的最大值.

【答案】分析:(1)先根據(jù)∠AOB=90°,∠BAO=30°,且A的坐標(biāo)為(3,0)求出B點坐標(biāo),用待定系數(shù)法求出過點A、B、C的二次函數(shù)關(guān)系式即可;
(2)由題意可得當(dāng)⊙C與AD相切時,△ABE面積最大,然后連接CD,由切線的性質(zhì),根據(jù)勾股定理,可求得AD的長,易證得△AOE∽△ADC,根據(jù)相似三角形的對應(yīng)邊成比例,易求得OE的長,繼而求得△ABE面積的最大值.
解答:解:(1)∵Rt△AOB在平面直角坐標(biāo)系中,∠AOB=90°,∠BAO=30°,且A的坐標(biāo)為(3,0),
∴B(0,),
設(shè)過A、B、C三點的函數(shù)關(guān)系式為y=a(x+1)(x-3),把點B(0,)代入得,
=a×1×(-3),解得a=-
∴過點A、B、C的二次函數(shù)關(guān)系式為:y=-(x+1)(x-3),即y=-x2+x+;

(2)∵△ABE的高OA是定值,
∴BE越長,則△ABE的面積越大,
∴當(dāng)⊙C與AD相切時,△ABE面積最大,連接CD,
則∠CDA=90°,
∵A(3,0),B(0,),⊙C的圓心為點C(-1,0),半徑為1,
∴CD=1,AC=3+1=4,
∴AD===,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
=,=,解得OE=,
∴BE=OB+OE=+,
∴S△ABE最大=BE•OA=×(+)×3=+
點評:本題考查的是二次函數(shù)綜合題,涉及到切線的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC外切于⊙O,E、F、H為切點,∠ABC=90°,直線FE、CB相交于D點,連接AO、HE、HF,則下列結(jié)論:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正確結(jié)論的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,已知Rt△ABO,∠BAO=90°,以點O為坐標(biāo)原點,OA所在直線為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點A落在第一象限內(nèi)的點D處.
(1)求D點坐標(biāo);
(2)若拋物線y=ax2+bx+3(a≠0)經(jīng)過B、D兩點,求此拋物線的表達(dá)式;
(3)若拋物線的頂點為E,它的對稱軸與OB交于點F,點P為射線OB上一動點,過點P作y軸的平行線,交拋物線于點M.是否存在點P,使得以E、F、M、P為頂點的四邊形為等腰梯形?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)是(-
b
2a
,
4ac-b2
4a
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知Rt△ABO,∠BAO=90°,以點O為坐標(biāo)原點,OA所在直線為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點A落在第一象限內(nèi)的點D處.
(1)求D點坐標(biāo);
(2)若拋物線y=ax2+bx+3(a≠0)經(jīng)過B、D兩點,求此拋物線的表達(dá)式;
(3)若拋物線的頂點為E,它的對稱軸與OB交于點F,點P為射線OB上一動點,過點P作y軸的平行線,交拋物線于點M.是否存在點P,使得以E、F、M、P為頂點的四邊形為等腰梯形?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)是(-數(shù)學(xué)公式,數(shù)學(xué)公式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年遼寧省遼陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知Rt△ABO,∠BAO=90°,以點O為坐標(biāo)原點,OA所在直線為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點A落在第一象限內(nèi)的點D處.
(1)求D點坐標(biāo);
(2)若拋物線y=ax2+bx+3(a≠0)經(jīng)過B、D兩點,求此拋物線的表達(dá)式;
(3)若拋物線的頂點為E,它的對稱軸與OB交于點F,點P為射線OB上一動點,過點P作y軸的平行線,交拋物線于點M.是否存在點P,使得以E、F、M、P為頂點的四邊形為等腰梯形?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)是(-,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省武漢市新洲區(qū)初中畢業(yè)年級數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•新洲區(qū)模擬)如圖,已知Rt△ABC外切于⊙O,E、F、H為切點,∠ABC=90°,直線FE、CB相交于D點,連接AO、HE、HF,則下列結(jié)論:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正確結(jié)論的個數(shù)為( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案