在△ABC中,∠ACB=90°,CH⊥AB于H,△ACD和△BCE均為等邊三角形.
(1)求證:△DAH∽△ECH;
(2)若AH:HB=1:4,求S△DAH:S△ECH

【答案】分析:(1)先證△ACH∽△CBH,得到,∠DAH=∠ECH從而推出△DAH∽△ECH;
(2)根據(jù)面積比等于相似比的平方進(jìn)行求解.
解答:解:(1)證明:∵△ACD和△BCE均為等邊三角形,
∴AC=AD,BC=CE,∠DAC=∠BCE.
在△ABC中,∠ACB=90°,CH⊥AB于H,
∴∠CAB+∠ACH=∠CAB+∠ABC=90°.
∴∠ACH=∠ABC.
同理∠CAB=∠HCB.
∴∠DAC+∠CAB=∠BCE+∠HCB,△ACH∽△CBH.
∴AH:CH=AC:BC=AD:CE,∠DAH=∠ECH.
∴△DAH∽△ECH.

(2)∵AH:HB=1:4,
∴HB=4AH.
∵△ACH∽△CBH,
∴CH2=AH•HB=4AH2
∵△DAH∽△ECH,
∴S△DAH:S△ECH.=AH2:CH2=1:4.
點評:此題考查等邊三角形的性質(zhì)及相似三角形的判定和性質(zhì)的理解及運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=8,BC=6,AB=10,則△ABC的外接圓半徑長為( 。
A、10B、5C、6D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、在△ABC中,AC=5,中線AD=4,那么邊AB的取值范圍為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,AC與⊙O相切于點A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2
;
(3)求圖中陰影部分的面積(結(jié)果用π表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)如圖,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA為半徑的⊙C與AB、BC分別交于點D、E,聯(lián)結(jié)AE,DE.
(1)求BC的長;
(2)求△AED的面積.

查看答案和解析>>

同步練習(xí)冊答案