讓我們一起來探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系.
第一步:數(shù)軸上兩點(diǎn)連線的中點(diǎn)表示的數(shù).自己畫一個數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線段AB的中點(diǎn)M表示的數(shù)是
1
1
. 再試幾個,我們發(fā)現(xiàn):數(shù)軸上連接兩點(diǎn)的線段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù).
第二步;平面直角坐標(biāo)系中兩點(diǎn)連線的中點(diǎn)的坐標(biāo)(如圖①)為便于探索,我們在第一象限內(nèi)取兩點(diǎn)A(x
1,y
1),B(x
2,y
2),取線段AB的中點(diǎn)M,分別作A、B到x軸的垂線段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(
,
)(用x
1,y
1,x
2,y
2表示),AEFB是矩形時也可以.我們的結(jié)論是:平面直角坐標(biāo)系中連接兩點(diǎn)的線段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù).
第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)在平面直角坐標(biāo)系中畫一個平行四邊形ABCD,設(shè)A(x
1,y
1),B(x
2,y
2),C(x
3,y
3),D(x
4,y
4),則其對角線交點(diǎn)Q的坐標(biāo)可以表示為Q(
,
),也可以表示為Q(
,
),經(jīng)過比較,我們可以分別得出關(guān)于x
1,x
2,x
3,x
4及,y
1,y
2,y
3,y
4的兩個等式是
x1+x3=x2+x4
x1+x3=x2+x4
和
y1+y3=y2+y4
y1+y3=y2+y4
. 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對角頂點(diǎn)的橫(縱)坐標(biāo)的
和相等
和相等
.