【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的長(zhǎng)方形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D、E兩點(diǎn)的坐標(biāo).
【答案】解:依題意可知,折痕AD是四邊形OAED的對(duì)稱軸, ∴在Rt△ABE中,AE=AO=10,AB=8,BE= = =6,
∴CE=4,
∴E(4,8).
在Rt△DCE中,DC2+CE2=DE2 ,
又∵DE=OD,
∴(8﹣OD)2+42=OD2 ,
∴OD=5,
∴D(0,5),
綜上D點(diǎn)坐標(biāo)為(0,5)、E點(diǎn)坐標(biāo)為(4,8).
【解析】先根據(jù)勾股定理求出BE的長(zhǎng),進(jìn)而可得出CE的長(zhǎng),求出E點(diǎn)坐標(biāo),在Rt△DCE中,由DE=OD及勾股定理可求出OD的長(zhǎng),進(jìn)而得出D點(diǎn)坐標(biāo).
【考點(diǎn)精析】利用翻折變換(折疊問題)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)判斷下列問題中,哪些是反比例函數(shù),并說明你的依據(jù).
(1)三角形的底邊一定時(shí),它的面積和這個(gè)底邊上的高;
(2)梯形的面積一定時(shí),它的中位線與高;
(3)當(dāng)矩形的周長(zhǎng)一定時(shí),該矩形的長(zhǎng)與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)分別是等邊三角形ABC的邊AB,AC上的點(diǎn),且BE=AF,CE,BF交于點(diǎn)P.
(1)求證:CE=BF;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)()的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac﹣b+1=0;④OAOB=.
其中正確結(jié)論的個(gè)數(shù)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4) 中正確的有( )
A. 4個(gè)
B. 3個(gè)
C. 2個(gè)
D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(a>0)的圖象與x軸的負(fù)半軸和正半軸分別交于A、B兩點(diǎn),與y軸交于點(diǎn)C,它的頂點(diǎn)為P,直線CP與過點(diǎn)B且垂直于x軸的直線交于點(diǎn)D,且CP:PD=2:3.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若tan∠PDB=,求這個(gè)二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com