【題目】如圖,在△ABC中,AB=AC,∠ABC=60°,D是三角形外一點,且BD=CD,AD與BC交于一點E,∠BDC=120°,則下列結論錯誤的是(
A.AD垂直平分BC
B.AB=2BD
C.∠ACD=90°
D.△ABD≌△ACD

【答案】B
【解析】解:∵AB=AC,BD=CD, ∴直線AD是線段BC的垂直平分線,
∴AD垂直平分BC,∴A符合題意;
∵∠ABC=60°,AB=AC,
∴△ABC是等邊三角形,
∴∠BAC=60°,又∠BDC=120°,
∴∠ABC=∠ACD=90°,∴C符合題意;
∵∠ABC=60°,
∴∠BAD=30°,
∴AD=2BD,∴B不符合題意;
在△ABD和△ACD中,
,
∴△ABD≌△ACD,∴D符合題意,
故選:B.
【考點精析】認真審題,首先需要了解線段垂直平分線的性質(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果對頂角互補,那么兩條直線互相________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,對稱軸為直線x=的拋物線經過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A

(1)求拋物線的解析式;

(2)若點P為第一象限內拋物線上的一點,設四邊形COBP的面積為S,求S的最大值;

(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把△EFP放置在菱形ABCD中,使得頂點E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>

(1)求∠EPF的大。

(2)若AP=10,求AE+AF的值;

(3)若△EFP的三個頂點E、F、P分別在線段AB、AD、AC上運動,請直接寫出AP長的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點F,過點F作DE∥BC交AB于點D,交AC于點E,那么下列結論: ①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長等于AB與AC的和;④BF=CF.其中正確的有 . (填正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個一元二次方程的一個根為3,二次項系數(shù)是1,則這個一元二次方程可以是_____(只需寫出一個方程即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線(a0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.

(1)求該拋物線的解析式;

(2)若點E為x軸下方拋物線上的一動點,當S△ABE=S△ABC時,求點E的坐標;

(3)在(2)的條件下,拋物線上是否存在點P,使BAP=CAE?若存在,求出點P的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你寫出一個絕對值小于3.7的負數(shù),你寫的是____

查看答案和解析>>

同步練習冊答案