【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關系如圖所示.則下列結論:
①A,B兩城相距300千米;
②乙車比甲車晚出發(fā)1小時,卻早到1小時;
③乙車出發(fā)后2.5小時追上甲車;
④當甲、乙兩車相距50千米時,t=或.
其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
【答案】B.
【解析】
試題解析:由圖象可知A、B兩城市之間的距離為300km,甲行駛的時間為5小時,而乙是在甲出發(fā)1小時后出發(fā)的,且用時3小時,即比甲早到1小時,
∴①②都正確;
設甲車離開A城的距離y與t的關系式為y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
設乙車離開A城的距離y與t的關系式為y乙=mt+n,
把(1,0)和(4,300)代入可得,解得,
∴y乙=100t-100,
令y甲=y乙可得:60t=100t-100,解得t=2.5,
即甲、乙兩直線的交點橫坐標為t=2.5,
此時乙出發(fā)時間為1.5小時,即乙車出發(fā)1.5小時后追上甲車,
∴③不正確;
令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,
當100-40t=50時,可解得t=,
當100-40t=-50時,可解得t=,
又當t=時,y甲=50,此時乙還沒出發(fā),
當t=時,乙到達B城,y甲=250;
綜上可知當t的值為或或或t=時,兩車相距50千米,
∴④不正確;
綜上可知正確的有①②共兩個,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】一個等腰三角形的一邊長為4cm,另一邊長為8cm,則該等腰三角形的周長是( )
A. 16cm B. 20cm C. 16cm或20cm D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖a是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)你認為圖b中的陰影部分的正方形的邊長等于多少?
(2)請用兩種不同的方法求圖b中陰影部分的面積. 方法1:(只列式,不化簡)
方法2:(只列式,不化簡)
(3)觀察圖b你能寫出下列三個代數(shù)式之間的等式關系嗎? 代數(shù)式:(m+n)2 , (m﹣n)2 , mn.
(4)根據(2)題中的等量關系,解決如下問題: 若a+b=8,ab=5.求(a﹣b)2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個三位數(shù),百位數(shù)字為x,十位數(shù)字比百位數(shù)字大2,個位數(shù)字比百位數(shù)字的2倍小3,用代數(shù)式表示這個三位數(shù)為( )
A. x(x+2)(2x﹣3) B. 100x+10(x﹣2)+2x﹣3 C. 100x+10(x+2)+2x﹣3 D. 100x+10(x﹣2)+2x+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+4x﹣2k=0有兩個實數(shù)根,則實數(shù)k的取值范圍是( )
A.k≥﹣2
B.k≤﹣2
C.k>﹣2
D.k=﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】盒中有4枚黑棋和2枚白棋,這些棋除顏色外無其他差別,在看不到盒中棋子顏色的前提下,從盒中隨機摸出3枚棋,下列事件是不可能事件的是( )
A. 摸出的3枚棋中至少有1枚黑棋B. 摸出的3枚棋中有2枚白棋
C. 摸出的3枚棋都是黑棋D. 摸出的3枚棋都是白棋
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蘋果生產基地,用30名工人進行采摘或加工蘋果 ,每名工人只能做其中一項工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設有x名工人進行蘋果采摘,全部售出后,總利潤為y元.
(1)求y與x的函數(shù)關系式;
(2)如何分配工人才能獲利最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面內的兩條直線有相交和平行兩種位置關系
(1)已知AB平行于CD,如a圖,當點P在AB、CD外部時,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,為什么?請說明理由.如b圖,將點P移動到AB、CD內部,以上結論是否仍然成立?若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關系?請說明結論;
(2)在圖b中,將直線AB繞點B逆時針方向旋轉一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關系?(不需證明)
(3)根據(2)的結論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com