如圖,E,F(xiàn),G,H分別是四邊形ABCD四條邊的中點,要使四邊形EFGH為矩形,則四邊形ABCD應具備的條件是( )

A.一組對邊平行而另一組對邊不平行
B.對角線相等
C.對角線互相垂直
D.對角線互相平分
【答案】分析:根據(jù)三角形的中位線定理得到四邊形EFGH一定是平行四邊形,再推出一個角是直角,由矩形的判定定理可求解.
解答:解:要是四邊形EHGF是矩形,應添加條件是對角線互相垂直,
理由是:連接AC、BD,兩線交于O,
根據(jù)三角形的中位線定理得:EF∥AC,EF=AC,GH∥AC,GH=AC,
∴EF∥GH,EF=GH,
∴四邊形EFGH一定是平行四邊形,
∴EF∥AC,EH∥BD,
∵BD⊥AC,
∴EH⊥EF,
∴∠HEF=90°,
故選C.
點評:能夠根據(jù)三角形的中位線定理證明:順次連接四邊形各邊中點所得四邊形是平行四邊形;順次連接對角線互相垂直的四邊形各邊中點所得四邊形是矩形;順次連接對角線相等的四邊形各邊中點所得四邊形是菱形.掌握這些結(jié)論,以便于運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案