精英家教網 > 初中數學 > 題目詳情
已知(-3,m)、(1,m)是拋物線y=2x2+bx+3的兩點,則b=____.
4.

試題分析:由于(-3,m)、(1,m)是拋物線y=2x2+bx+3的兩點,易知,拋物線關于x=-1對稱,即,解得b=4.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,拋物線與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標為(4,0).

(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

當拋物線的解析式中含有字母系數時,隨著系數中的字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以拋物線頂點坐標為(m,2m-1),即x=m③,y=2m-1④.
當m的值變化時,x,y的值也隨之變化,因而y的值也隨x值的變化而變化.
將③代入④,得y=2x-1⑤.可見,不論m取任何實數,拋物線頂點的縱坐標y和橫坐標x都滿足關系式:y=2x-1;
根據上述閱讀材料提供的方法,確定點(-2m, m-1)滿足的函數關系式為_______.
(2)根據閱讀材料提供的方法,確定拋物線頂點的縱坐標y與橫坐標x之間的關系式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于上底面上一點)。已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設AE=BF=x(cm).

(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應取何值?S最大值是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

函數y=x2+bx+c與y=x的圖象如圖所示,有以下結論:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④當1<x<3時,x2+(b﹣1)x+c<0.其中正確的個數為(  。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數的圖象經過點A(6,0)、B(﹣2,0)和點C(0,﹣8).

(1)求該二次函數的解析式;
(2)設該二次函數圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為   
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數關系式,并寫出自變量t的取值范圍;
③設S0是②中函數S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

寫出一個開口向下、且經過點(-1,2)的二次函數的表達式                ;

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,已知正三角形ABC的邊長為1,E、F、G分別是AB、BC、CA上的點,且AE=BF=CG,設△EFG的面積為y,AE的長為x,則y關于x的函數的圖象大致是(  )

A.  B.  C.  D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數的圖象的頂點坐標是(    )
A.(-1,3)B.(1,3)C.(1,-3)D.(-1,-3)

查看答案和解析>>

同步練習冊答案