如圖,在平面直角坐標系中,點O是原點,點A的坐標為(4,0),以OA為一邊,在第一象限作等邊△OAB

(1)求點B的坐標.

(2)求經(jīng)過O、A、B三點的拋物線的解析式.

(3)直線y=x與(2)中的拋物線在第一象限相交于點C,求點C的坐標;

(4)在(3)中,直線AC上方的拋物線上,是否存在一點D,使得△OCD的面積最大?如果存在。求出點D的坐標和面積的最大值,如果不存在,請說明理由.

(1)解:過點B作BE⊥x軸于點E

∵△OAB是等邊三角形

∴OE=2,BE=2

∴點B的坐標為(2,2).

(2)根據(jù)拋物線的對稱性可知,點B(2,2)是拋物線的頂點

設拋物線的解析式為y=a(x-2)+2

當x=0時,y=0

∴0=a(0-2)+2

∴a=-

∴拋物線的解析式為y=-(x-2)+2

即:y=-+2

(3)設點C的橫坐標為x,則縱坐標為

即點C的坐標為(x,x)代入拋物線的解析式得:x=-+2

解得:x=0或x=3

∵點C在第一象限,∴x=3,∴點C的坐標為(3,

(4)存在

設點D的坐標為(x,-+2x),△OCD的面積為y

過點D作DF⊥x軸于點F,交OC于點G,則點G的坐標為(x,x)

作CM⊥DF于點M

則OF+DM=3,DG=-+2x-x=-

∴S=(-x)×3

∴S=-x=-(x-

∴△OCD的最大面積為,此時點D的坐標為(

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案